Dynamic Programming on Trees

Lecture 4
September 2, 2016
What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an *efficient* algorithm.

Key Questions:
- Given a recursive algorithm, how do we analyze the complexity when it is memoized?
- How do we recognize whether a problem admits a dynamic programming based efficient algorithm?
- How do we further optimize time and space of a dynamic programming based algorithm?
Dynamic Programming Template

1. Come up with a recursive algorithm to solve problem
2. Understand the structure/number of the subproblems generated by recursion
3. Memoize the recursion
 - set up compact notation for subproblems
 - set up a data structure for storing subproblems
4. Iterative algorithm
 - Understand dependency graph on subproblems
 - Pick an evaluation order (any topological sort of the dependency dag)
5. Analyze time and space
6. Optimize
Dynamic Programming on Trees

Fact: Many graph optimization problems are **NP-Hard**

Fact: The same graph optimization problems are in \(P \) on trees.

Why?
Dynamic Programming on Trees

Fact: Many graph optimization problems are **NP-Hard**

Fact: The same graph optimization problems are in **P** on trees.

Why?

A significant reason: DP algorithm based on *decomposability*

Powerful methodology for graph algorithms via a formal notion of decomposability called **treewidth** (beyond the scope of this class)
Maximum Independent Set in a Graph

Definition

Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$
Maximum Independent Set Problem

Input Graph $G = (V, E)$

Goal Find maximum sized independent set in G
Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$

Goal Find maximum weight independent set in G
No one knows an efficient (polynomial time) algorithm for this problem.

Problem is NP-Hard and it is believed that there is no polynomial time algorithm.

Brute-force algorithm:

Try all subsets of vertices.
A Recursive Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $N(u)$ be its neighbors.
A Recursive Algorithm

Let \(V = \{v_1, v_2, \ldots, v_n\} \).

For a vertex \(u \) let \(N(u) \) be its neighbors.

Observation

\(v_1 \): vertex in the graph.

One of the following two cases is true

Case 1 \(v_1 \) is in some maximum independent set.

Case 2 \(v_1 \) is in no maximum independent set.

We can try both cases to “reduce” the size of the problem
A Recursive Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $N(u)$ be its neighbors.

Observation
v_1: vertex in the graph.
One of the following two cases is true

Case 1 v_1 is in some maximum independent set.
Case 2 v_1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

$G_1 = G - v_1$ obtained by removing v_1 and incident edges from G
$G_2 = G - v_1 - N(v_1)$ obtained by removing $N(v_1) \cup v_1$ from G

$\text{MIS}(G) = \max\{\text{MIS}(G_1), \text{MIS}(G_2) + w(v_1)\}$
A Recursive Algorithm

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{RecursiveMIS}(G):
\textbf{if} G is empty \textbf{then} Output 0
\textit{a} = RecursiveMIS($G - v_1$)
\textit{b} = $w(v_1)$ + RecursiveMIS($G - v_1 - N(v_1)$)
Output $\text{max}(a, b)$
\hline
\end{tabular}
\end{center}
Recursive Algorithms
..for Maximum Independent Set

Running time:

\[T(n) = T(n - 1) + T\left(n - 1 - \deg(v_1)\right) + O(1 + \deg(v_1)) \]

where \(\deg(v_1) \) is the degree of \(v_1 \). \(T(0) = T(1) = 1 \) is base case.

Worst case is when \(\deg(v_1) = 0 \) when the recurrence becomes

\[T(n) = 2T(n - 1) + O(1) \]

Solution to this is \(T(n) = O(2^n) \).
Memoization

We can memoize the recursive algorithm.

Question: Does it lead to an efficient algorithm?
Memoization

We can memoize the recursive algorithm.

Question: Does it lead to an efficient algorithm?

What is number of subproblems if started on graph with n nodes?

Exercise: Show that even when G is a cycle the number of subproblems is exponential in n.
Part I

Maximum Weighted Independent Set in Trees
Maximum Weight Independent Set in a Tree

Input: Tree $T = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$

Goal: Find maximum weight independent set in T

Maximum weight independent set in above tree: ??
A Recursive Algorithm

For an arbitrary graph G:
1. Number vertices as v_1, v_2, \ldots, v_n
2. Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree?
A Recursive Algorithm

For an arbitrary graph G:

1. Number vertices as v_1, v_2, \ldots, v_n

2. Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T?
Towards a Recursive Solution

Natural candidate for v_n is root r of T? Let O be an optimum solution to the whole problem.

Case $r \notin O$: Then O contains an optimum solution for each subtree of T hanging at a child of r.
Towards a Recursive Solution

Natural candidate for \(v_n \) is root \(r \) of \(T \)? Let \(O \) be an optimum solution to the whole problem.

Case \(r \notin O \) : Then \(O \) contains an optimum solution for each subtree of \(T \) hanging at a child of \(r \).

Case \(r \in O \) : None of the children of \(r \) can be in \(O \). \(O - \{r\} \) contains an optimum solution for each subtree of \(T \) hanging at a grandchild of \(r \).
Towards a Recursive Solution

Natural candidate for v_n is root r of T? Let O be an optimum solution to the whole problem.

Case $r \notin O$: Then O contains an optimum solution for each subtree of T hanging at a child of r.

Case $r \in O$: None of the children of r can be in O. $O - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.
Towards a Recursive Solution

Natural candidate for v_n is root r of T? Let O be an optimum solution to the whole problem.

Case $r \not\in O$: Then O contains an optimum solution for each subtree of T hanging at a child of r.

Case $r \in O$: None of the children of r can be in O. $O - \{ r \}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them?
Towards a Recursive Solution

Natural candidate for v_n is root r of T? Let O be an optimum solution to the whole problem.

Case $r \notin O$: Then O contains an optimum solution for each subtree of T hanging at a child of r.

Case $r \in O$: None of the children of r can be in O. $O - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? $O(n)$
Example

```
    r
   /|
  a  b
 /|
c d e
 /|
h i
 /|
   j
```

Nodes: a, b, c, d, e, f, g, h, i, j

Weights: 4, 5, 6, 7, 8, 9, 10, 11
A Recursive Solution

\(T(u) \): subtree of \(T \) hanging at node \(u \)

\(\text{OPT}(u) \): max weighted independent set value in \(T(u) \)

\[
\text{OPT}(u) = \max (\text{OPT}(\text{child of } u), w(u) + \text{OPT}(\text{grandchild of } u))
\]
A Recursive Solution

\(T(u) \): subtree of \(T \) hanging at node \(u \)

\(OPT(u) \): max weighted independent set value in \(T(u) \)

\[
OPT(u) = \max \left\{ \sum_{v \text{ child of } u} OPT(v), \quad w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \right\}
\]
Iterative Algorithm

1. Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u.

2. What is an ordering of nodes of a tree T to achieve above?
Iterative Algorithm

1. Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u.

2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.
Iterative Algorithm

\textbf{MIS-Tree} \((T)\):

Let \(v_1, v_2, \ldots, v_n\) be a post-order traversal of nodes of \(T\)

\begin{verbatim}
for i = 1 to n do
 \(M[v_i] = \max(\sum_{v_j \text{ child of } v_i} M[v_j], \ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j])\)
\end{verbatim}

return \(M[v_n]\) (* Note: \(v_n\) is the root of \(T\) *)

\textbf{Space:} \(O(n)\) to store the value at each node of \(T\)

\textbf{Running time:}

1. Naive bound: \(O(n^2)\) since each \(M[v_i]\) evaluation may take \(O(n)\) time and there are \(n\) evaluations.

2. Better bound: \(O(n)\). Value \(M[v_j]\) is accessed only by its parent and grand parent.
Iterative Algorithm

MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of T

for $i = 1$ to n do

$$M[v_i] = \max \left(\sum_{v_j \text{ child of } v_i} M[v_j], \quad w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \right)$$

return $M[v_n]$ (* Note: v_n is the root of T *)

Space:
MIS-Tree\((T) \):

Let \(v_1, v_2, \ldots, v_n \) be a post-order traversal of nodes of \(T \)

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

\[
M[v_i] = \max \left(\sum_{v_j \text{ child of } v_i} M[v_j], w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \right)
\]

\text{return } M[v_n] \quad \text{(* Note: } v_n \text{ is the root of } T \text{ *)}

Space: \(O(n) \) to store the value at each node of \(T \)

Running time:
Iterative Algorithm

MIS-Tree (T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of T

for $i = 1$ to n do

\[
M[v_i] = \max \left(\sum_{v_j \text{ child of } v_i} M[v_j], \quad w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \right)
\]

return $M[v_n]$ (* Note: v_n is the root of T *)

Space: $O(n)$ to store the value at each node of T

Running time:

- Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of T

for $i = 1$ to n do

\[
M[v_i] = \max \left(\sum_{v_j \text{ child of } v_i} M[v_j], \ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \right)
\]

return $M[v_n]$ (* Note: v_n is the root of T *)

Space: $O(n)$ to store the value at each node of T

Running time:

1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.

2. Better bound: $O(n)$. A value $M[v_j]$ is accessed only by its parent and grand parent.
Why did DP work on trees?

Each node (including the root) is a separator!

Definition

Given a graph $G = (V, E)$ a set of nodes $S \subset V$ is a separator for G if $G - S$ has at least two connected components.
Why did DP work on trees?

Each node (including the root) is a *separator*!

Definition

Given a graph $G = (V, E)$ a set of nodes $S \subseteq V$ is a *separator* for G if $G - S$ has at least two connected components.

Definition

S is a *balanced* separator if each connected component of $G - S$ has at most $2|V(G)|/3$ nodes.
Why did DP work on trees?

Each node (including the root) is a separator!

Definition

Given a graph $G = (V, E)$ a set of nodes $S \subseteq V$ is a separator for G if $G - S$ has at least two connected components.

Definition

S is a balanced separator if each connected component of $G - S$ has at most $2|V(G)|/3$ nodes.

Exercise: Prove that every tree T has a balanced separator consisting of a single node.
Part II

Minimum Dominating Set in Trees
Definition

Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is a dominating set if for all $v \in V$, either $v \in S$ or a neighbor of v is in S.

Some dominating sets in graph above: \{A, B, C, D, E, F\},
Input
Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$

Goal
Find minimum weight dominating set in G
Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$

Goal Find minimum weight dominating set in G

NP-Hard problem
Minimum Weight Dominating Set in a Tree

Input
Tree $T = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$

Goal
Find minimum weight dominating set in T

Minimum weight dominating set in above tree: ??
Recursive Algorithm

r is root of T. Let O be an optimum solution for T.

Case $r \not\in O$: Then O must contain some child of r. Which one?
Recursive Algorithm

\(r \) is root of \(T \). Let \(O \) be an optimum solution for \(T \).

Case \(r \notin O \): Then \(O \) must contain some child of \(r \). Which one?

Case \(r \in O \): None of the children of \(r \) *need* to be in \(O \) because \(r \) can dominate them. However, they may have to be.
Recursive Algorithm

\(r \) is root of \(T \). Let \(\mathcal{O} \) be an optimum solution for \(T \).

Case \(r \notin \mathcal{O} \): Then \(\mathcal{O} \) must contain some child of \(r \). Which one?

Case \(r \in \mathcal{O} \): None of the children of \(r \) need to be in \(\mathcal{O} \) because \(r \) can dominate them. However, they may have to be.

In both cases it is not feasible to express \(|\mathcal{O}| \) easily as optimum solution values of children or descendants of \(r \).

Removing \(r \) decomposes \(T \) into subtrees rooted at children of \(r \). However, not easy to decompose problem structure recursively. Problems at children of \(r \) are dependent. Need to introduce additional variable(s).
Let u_1, u_2, \ldots, u_k be children of root r of T

What “information” do T_{u_1}, \ldots, T_{u_k} need to know about r's status in an optimum solution in order to become “independent”
Let u_1, u_2, \ldots, u_k be children of root r of T

What “information” do T_{u_1}, \ldots, T_{u_k} need to know about r's status in an optimum solution in order to become “independent”

- Whether r is included in the solution
- If r is not included then which of the children is going to dominate it. Equivalently, T_{u_i} needs to know whether it should cover r or some other child will.
Recursive Algorithm: Introducing Variables

- **u**: node in tree
- **pi**: boolean variable to indicate whether parent is in solution.
 - $pi = 0$ means parent is not included. $pi = 1$ means it is included.
- **cp**: boolean variable to indicate whether node needed to cover parent.
 - $cp = 1$ means parent needs to be covered. $cp = 0$ means not needed.

$OPT(u, pi, cp)$: value of minimum dominating set in T_u with booleans pi and cp with meaning above.

$OPT(r, 0, 0)$: value of minimum dominating set in T

$OPT(u, 1, 0)$: value of min dominating set in T_u with parent of u included no need to cover parent.
Recursive Solution

Can we express $OPT(u, pi, cp)$ recursively via children of u?

First consider $OPT(u, 0, 0)$ which is the value of a minimum dominating set in T_u where we assume that u's parent is not included and u does not need to cover its parent. Let C_u be children of u.

Case u is included: Then u does not need to covered by any child and we recurse on children with u being included.

$OPT(u, 0, 0) = w(u) + \sum_{v \in C_u} OPT(v, 1, 0)$

Case u is not included: Then u needs to be covered by some child. We do a min over all children.

$OPT(u, 0, 0) = \min_{v \in C_u} (OPT(v, 0, 1) + \sum_{v_0 \in C_u} OPT(v_0, 0, 0))$

Since one of these cases has to be true, we take the min of the values in the above two cases to compute $OPT(u, 0, 0)$.
Recursive Solution

Can we express $OPT(u, pi, cp)$ recursively via children of u?

First consider $OPT(u, 0, 0)$ which is the value of a minimum dominating set in T_u where we assume that u’s parent is not included and u does not need to cover its parent. Let C_u be children of u.

Case u is included: Then u does not need to be covered by any child and we recurse on children with u being included.

$$OPT(u, 0, 0) = w(u) + \sum_{v \in C_u} OPT(v, 1, 0)$$

Case u is not included: Then u needs to be covered by some child. We do a min over all children.

$$OPT(u, 0, 0) = \min_{v \in C_u} (OPT(v, 0, 1) + \sum_{v' \in C_u - v} OPT(v', 0, 0))$$

Since one of these cases has to be true, we take the min of the values in the above two cases to compute $OPT(u, 0, 0)$.

Chandra & Ruta (UIUC)
CS473 31
Fall 2016 31 / 46
Recursive Solution

Consider $OPT(u, 1, 0)$ which is the value of a minimum dominating set in T_u where we assume that u's parent is included and u does not need to cover its parent. Let C_u be children of u.

Case u is included: Then u does not need to be covered by any child and we recurse on children with u being included.

$$OPT(u, 1, 0) = w(u) + \sum_{v \in C_u} OPT(v, 1, 0)$$

Case u is not included: Since u's parent is included u does not need to be covered by its children. Thus we have,

$$OPT(u, 1, 0) = \sum_{v \in C_u} OPT(v, 0, 0)$$

Since one of these cases has to be true, we take the min of the values in the above two cases to compute $OPT(u, 0, 0)$.

Caution: Not including u may appear to be always advantageous but it is not true.
Recursive Solution

Consider $OPT(u, 1, 0)$ which is the value of a minimum dominating set in T_u where we assume that u's parent is included and u does not need to cover its parent. Let C_u be children of u.

Case u is included: Then u does not need to be covered by any child and we recurse on children with u being included.

$$OPT(u, 1, 0) = w(u) + \sum_{v \in C_u} OPT(v, 1, 0)$$

Case u is not included: Since u's parent is included u does not need to be covered by its children. Thus we have,

$$OPT(u, 1, 0) = \sum_{v \in C_u} OPT(v, 0, 0)$$

Since one of these cases has to be true, we take the min of the values in the above two cases to compute $OPT(u, 0, 0)$.

Caution: Not including u may appear to be always advantageous but it is not true.
Recursive Solution

Consider \(OPT(u, 0, 1) \) which is the value of a minimum dominating set in \(T_u \) where we assume that \(u \)’s parent is not included and \(u \) needs to cover its parent. Let \(C_u \) be children of \(u \).

Case \(u \) **is included**: Then \(u \) does not need to be covered by any child and we recurse on children with \(u \) being included.

\[
OPT(u, 0, 1) = w(u) + \sum_{v \in C_u} OPT(v, 1, 0)
\]

Case \(u \) **is not included**: This does not arise because \(u \) has to cover its parent.
Recursive Solution

Consider $OPT(u, 1, 1)$ which is the value of a minimum dominating set in T_u where we assume that u’s parent is included and u needs to cover its parent.

This subproblem does not make sense since if u’s parent is included then u does not need to cover it. In other words it suffices to only consider the subproblems $OPT(u, 0, 0), OPT(u, 1, 0), OPT(u, 0, 1)$.
Base Cases

Leaves are base cases. If u is a leaf.

- $OPT(u, 0, 0) = w(u)$
- $OPT(u, 1, 0) = 0$
- $OPT(u, 0, 1) = w(u)$
Minimum weight dominating set value in T is $OPT(r, 0, 0)$

To compute $OPT(r, 0, 0)$ we need to compute recursively $OPT(u, 0, 0)$, $OPT(u, 1, 0)$, $OPT(u, 0, 1)$ for all $u \in T$. Thus number of subproblems is $O(n)$.

Can do this bottom up from leaves to root.
DominatingSet-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of T.
Allocate array $M[1..n, 0..1, 0..1]$ to store $OPT(v_i, pi, cp)$ values.

for $i = 1$ to n do

Compute $OPT(v_i, 0, 0)$, $OPT(v_i, 1, 0)$ and $OPT(v_i, 0, 1)$ using values of children of v_i stored in M,
or via base cases if v_i is leaf.

Store computed values in M for use by parent of v_i.

return $OPT(v_n, 0, 0)$ (* Note: v_n is the root of T *)

Exercise: Work out details and prove an $O(n)$ time implementation.
Recap

- To obtain recursive solution we introduced additional variables based on “information” needed to decompose.
- Decomposition depends both on structure (trees decompose via separators) and objective function.
- Subproblems and recursion are almost defined hand in hand.
Part III

Maximum Independent Set in Planar Graphs
Planar Graphs

Definition

(Informal): A graph $G = (V, E)$ is planar if it can be drawn in the plane without edges crossing.

(More formal): G is planar if there is a mapping of $\phi : V \rightarrow \mathbb{R}^2$ to distinct points in the 2-dimensional Euclidean plane and a mapping of each edge $uv \in E$ to a non-crossing curve $\psi(uv)$ that connects $\phi(u)$ to $\phi(v)$ such that the curves corresponding to different edges intersect only at $\phi(V)$.

Planar graphs are very important in both theory and practice.
Planar Graph Theorems

Many beautiful properties and theorems.

- Euler’s theorem. \(|E| \leq 3|V| - 6\) for every planar graph. Hence there is always a node of degree at most 5. Thus planar graphs are 5-degenerate.

- Kuratowski’s theorem: \(G\) is planar iff it “excludes” \(K_5\) or \(K_{3,3}\).

- 4-Color theorem. Every planar graph is 4-colorable.

- Planar Separator Theorem: Every planar graph \(G\) on \(n\) nodes has a balance separator of size \(O(\sqrt{n})\).

Properties are exploited to develop algorithms.
Maximum Independent Set in Planar Graphs

MIS in general graphs: best known algorithm runs in time $O(1.889^n)$.

Believed that MIS in general graphs requires c^n time for some fixed $c > 1$.

However, can solve MIS in planar graphs in $2^{O(\sqrt{n})}$ time.
Recursive Decomposition via Planar Separator

Theorem

\text{RecursiveDecomp}(G):

If \(|V(G)| \leq n_0\)

Output tree \(T\) with single root node containing \(V(G)\)

Else

Compute balanced separator \(S\) of \(G\) of size \(O(\sqrt{|V(G)|})\)

For each component \(G_i\) of \(G - S\) do

\(T_i = \text{RecursiveDecomp}(G_i)\)

Create \(T\) with root \(r\) containing \(S\)

Make each \(T_i\) a child of \(r\)

Output \(T\)

Using linear-time algorithm to compute planar separator, algorithms run time is \(O(n)\).
\[|S| \leq \sqrt{n} \]
Properties of Decomposition Tree T

Let T be the decomposition tree for planar G with n nodes

- T is a rooted tree where each tree-node $v \in V(T)$ there is a set $S_v \subseteq V(G)$ of G’s vertices associated with it.
 $|S_v| = O(\sqrt{n})$ for all $v \in V(T)$.
- $S_v \cap S_u = \emptyset$ for $u \neq v$ and $\bigcup_{v \in V(T)} S_v = V(G)$.
- For node v let $S'_v = \bigcup_{v \in T_v} S_v$ be the nodes in sub-tree of T rooted at v. Let $G_v = G[S'_v]$ be the sub-graph of G induced by S'_v. Then S_v is a balanced separator for G_v.
- Depth of T is $O(\log n)$. $|V(T)| = O(n)$.