Chapter 20

Network flow, duality and Linear Programming

NEW CS 473: Theory II, Fall 2015
November 5, 2015

20.1 Network flow via linear programming

20.1.1 Network flow: Problem definition

20.1.1.1 Network flow
(A) Transfer as much "merchandise" as possible from one point to another.
(B) Wireless network, transfer a large file from s to t.
(C) Limited capacities.

20.1.1.2 Network: Definition
(A) Given a network with capacities on each connection.
(B) Q: How much "flow" can transfer from source s to a sink t ?
(C) The flow is splitable.
(D) Network examples: water pipes moving water. Electricity network.
(E) Internet is packet base, so not quite splitable.

Definition 20.1.1. $\star \mathrm{G}=(\mathrm{V}, \mathrm{E})$: a directed graph.
$\star \forall(u, v) \in \mathrm{E}(\mathrm{G}):$ capacity $c(u, v) \geq 0$,
$\star(u, v) \notin G \Longrightarrow c(u, v)=0$.
$\star s$: source vertex, t : target sink vertex.
\star G, s, t and $c(\cdot)$: form flow network or network.

20.1.1.3 Network Example

(A) All flow from the source ends up in the sink.
(B) Flow on edge: non-negative quantity \leq capacity of edge.

20.1.1.4 Flow definition

Definition 20.1.2 (flow). flow in network is a function $f(\cdot, \cdot): \mathrm{E}(\mathrm{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:
$\forall(u, v) \in \mathrm{E} \quad f(u, v) \leq c(u, v)$.
(B) Anti symmetry:
$\forall u, v \quad f(u, v)=-f(v, u)$.
(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law):
$\forall u \in \mathrm{~V} \backslash\{s, t\} \quad \sum_{v} f(u, v)=0$.
flow/value of $f:|f|=\sum_{v \in V} f(s, v)$.

20.1.1.5 Problem: Max Flow

(A) Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem 20.1.3 (Maximum flow). Given a network G find the maximum flow in G. Namely, compute a legal flow f such that $|f|$ is maximized.

20.1.2 Network flow via linear programming

20.1.2.1 Network flow via linear programming

Input: $G=(V, E)$ with source s and $\operatorname{sink} t$, and capacities $c(\cdot)$ on the edges. Compute max flow in G.

$$
\begin{array}{ll}
\forall(u, v) \in E & 0 \leq x_{u \rightarrow v} \\
& x_{u \rightarrow v} \leq \mathrm{c}(u \rightarrow v)
\end{array}
$$

$\forall v \in V \backslash\{\mathrm{~s}, \mathrm{t}\} \quad \sum_{(u, v) \in E} x_{u \rightarrow v}-\sum_{(v, w) \in E} x_{v \rightarrow w} \leq 0$

$$
\sum_{(u, v) \in E} x_{u \rightarrow v}-\sum_{(v, w) \in E} x_{v \rightarrow w} \geq 0
$$

maximizing $\quad \sum_{(\mathrm{s}, u) \in E} x_{\mathrm{s} \rightarrow u}$

20.1.3 Min-Cost Network flow via linear programming

20.1.3.1 Min cost flow

Input:
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$: directed graph.
s : source.
$\mathrm{t}: \operatorname{sink}$
$c(\cdot)$: capacities on edges,
ϕ : Desired amount (value) of flow.
$\kappa(\cdot):$ Cost on the edges.
Definition - cost of flow cost of flow $\mathrm{f}: \operatorname{cost}(\mathbf{f})=\sum_{e \in E} \kappa(e) * \mathrm{f}(e)$.

20.1.3.2 Min cost flow problem

Min-cost flow minimum-cost $s-t$ flow problem: compute the flow f of min cost that has value ϕ. min-cost circulation problem Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges.
(All flow that enters must leave.)

Claim 20.1.4. If we can solve min-cost circulation \Longrightarrow can solve min-cost flow.

20.2 Duality and Linear Programming

20.2.0.1 Duality...

(A) Every linear program L has a dual linear program L^{\prime}.
(B) Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
(C) Lets look an example..

20.2.1 Duality by Example

20.2.1.1 Duality by Example

\max	$z=4 x_{1}+x_{2}+3 x_{3}$
s.t.	$x_{1}+4 x_{2} \leq 1$
	$3 x_{1}-x_{2}+x_{3} \leq 3$
	$x_{1}, x_{2}, x_{3} \geq 0$

(A) η : maximal possible value of target function.
(B) Any feasible solution \Rightarrow a lower bound on η.
(C) In above: $x_{1}=1, x_{2}=x_{3}=0$ is feasible, and implies $z=4$ and thus $\eta \geq 4$.
(D) $x_{1}=x_{2}=0, x_{3}=3$ is feasible $\Longrightarrow \eta \geq z=9$.
(E) How close this solution is to opt? (i.e., η)
(F) If very close to optimal - might be good enough. Maybe stop?

20.2.1.2 Duality by Example: II

$$
\begin{aligned}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(A) Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$
\begin{aligned}
2\left(x_{1}+4 x_{2}\right) & \leq 2(1) \\
+3\left(3 x_{1}-x_{2}+x_{3}\right) & \leq 3(3) .
\end{aligned}
$$

(B) The resulting inequality is

$$
\begin{equation*}
11 x_{1}+5 x_{2}+3 x_{3} \leq 11 \tag{20.1}
\end{equation*}
$$

20.2.1.3 Duality by Example: II

$$
\begin{array}{cl}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\mathrm{s.t.} & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

(A) got $11 x_{1}+5 x_{2}+3 x_{3} \leq 11$.
(B) inequality must hold for any feasible solution of L.
(C) Objective: $z=4 x_{1}+x_{2}+3 x_{3}$ and x_{1}, x_{2} and x_{3} are all non-negative.
(D) Inequality above has larger coefficients than objective (for corresponding variables)
(E) For any feasible solution: $z=4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11$,

20.2.1.4 Duality by Example: III

\max	$z=4 x_{1}+x_{2}+3 x_{3}$
s.t.	$x_{1}+4 x_{2} \leq 1$
	$3 x_{1}-x_{2}+x_{3} \leq 3$
	$x_{1}, x_{2}, x_{3} \geq 0$

(A) For any feasible solution: $z=4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11$,
(B) Opt solution is LP L is somewhere between 9 and 11 .
(C) Multiply first inequality by y_{1}, second inequality by y_{2} and add them up:

$y_{1}\left(x_{1}\right.$	+	$4 x_{2}$		$) \leq$	$y_{1}(1)$	
$+y_{2}\left(3 x_{1}\right.$	-	x_{2}	+	x_{3}	$) \leq$	$y_{2}(3)$
$\left(y_{1}+3 y_{2}\right) x_{1}$	+	$\left(4 y_{1}-y_{2}\right) x_{2}$	+	$y_{2} x_{3}$	\leq	$y_{1}+3 y_{2}$.

20.2.1.5 Duality by Example: IV

$$
\begin{aligned}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(A) $\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2}$.

$$
\begin{array}{rlr}
4 & \leq y_{1}+3 y_{2} & \text { (A) Compare to target function - require expression } \\
1 & \leq 4 y_{1}-y_{2} & \text { bigger than target function in each variable. } \\
3 & \leq y_{2}, \\
\Longrightarrow z & =4 x_{1}+x_{2}+3 x_{3} \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2}
\end{array}
$$

20.2.1.6 Duality by Example: IV

Primal LP:

$$
\begin{aligned}
\hline \max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Dual LP: \widehat{L}

$$
\begin{array}{cl}
\min & y_{1}+3 y_{2} \\
\mathrm{s.t.} & y_{1}+3 y_{2} \geq 4 \\
& 4 y_{1}-y_{2} \geq 1 \\
& y_{2} \geq 3 \\
& y_{1}, y_{2} \geq 0 .
\end{array}
$$

(A) Best upper bound on η (max value of $z)$ then solve the LP \widehat{L}.
(B) \widehat{L} : Dual program to L.
(C) opt. solution of \widehat{L} is an upper bound on optimal solution for L.

20.2.1.7 Primal program/Dual program

\max	$\sum_{j=1}^{n} c_{j} x_{j}$	$\min \sum_{i=1}^{m} b_{i} y_{i}$
s.t.	$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$,	
	for $i=1, \ldots, m$,	s.t. $\sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}$,
	$x_{j} \geq 0$,	for $j=1, \ldots, n$,
	for $j=1, \ldots, n$.	$y_{i} \geq 0$,
	for $i=1, \ldots, m$.	

20.2.1.8 Primal program/Dual program

Dualvariables \quadPrimal variables	$x_{1} \geqq 0$	$x_{2} \geqq 0$	$x_{3} \geqq 0$		$x_{n} \geqq 0$	Primal relation	$\operatorname{Min} v$
$y_{1} \geqq 0$	a_{11}	a_{12}	a_{13}	\cdots	$a_{1 n}$	\leqq	b_{1}
$y_{2} \geqq 0$	a_{21}	a_{22}	a_{23}	\ldots	$a_{2 n}$	\leqq	b_{2}
\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots
$y_{m} \geqq 0$	$a_{m 1}$	$a_{m 2}$	$a_{m 3}$		$a_{m n}$	\leqq	b_{m}
Dual Relation	IV	IV	IIV		IV		
Max z	c_{1}	c_{2}	c_{3}	\cdots	c_{n}		

max	$c^{T} x$
s. t.	$A x \leq b$.
	$x \geq 0$.

\min	$y^{T} b$
s. t.	$y^{T} A \geq c^{T}$.
	$y \geq 0$.

20.2.1.9 Primal program/Dual program

What happens when you take the dual of the dual?

\max	$\sum_{j=1}^{n} c_{j} x_{j}$	$\min \sum_{i=1}^{m} b_{i} y_{i}$
s.t.	$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$,	
	for $i=1, \ldots, m$,	s.t. $\sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}$,
	$x_{j} \geq 0$,	
	for $j=1, \ldots, n$,	
	$y_{i} \geq 0$,	
	for $i=1, \ldots, n$.	

20.2.1.10 Primal program / Dual program in standard form

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& \quad \text { for } i=1, \ldots, m, \\
& x_{j} \geq 0, \\
& \quad \text { for } j=1, \ldots, n .
\end{aligned}
$$

20.2.2 Dual program in standard form

20.2.2.1 Dual of a dual program

$$
\begin{array}{cc}
\max & \sum_{i=1}^{m}\left(-b_{i}\right) y_{i} \\
\text { s.t. } & \sum_{i=1}^{m}\left(-a_{i j}\right) y_{i} \leq-c_{j}, \\
& \text { for } j=1, \ldots, n, \\
y_{i} \geq 0, \\
& \text { for } i=1, \ldots, m .
\end{array}
$$

$$
\begin{aligned}
\min & \sum_{j=1}^{n}-c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n}\left(-a_{i j}\right) x_{j} \geq-b_{i}, \\
& \quad \text { for } i=1, \ldots, m, \\
& x_{j} \geq 0, \\
& \text { for } j=1, \ldots, n .
\end{aligned}
$$

20.2.3 Dual of dual program

20.2.3.1 Dual of a dual program written in standard form

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n}-c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n}\left(-a_{i j}\right) x_{j} \geq-b_{i}, \\
& \text { for } i=1, \ldots, m, \\
& x_{j} \geq 0, \\
& \text { for } j=1, \ldots, n .
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& \quad \text { for } i=1, \ldots, m, \\
& \quad x_{j} \geq 0, \\
& \quad \text { for } j=1, \ldots, n .
\end{aligned}
$$

\Longrightarrow Dual of the dual LP is the primal LP!

20.2.3.2 Result

Proved the following:

Lemma 20.2.1. Let L be an $L P$, and let L^{\prime} be its dual. Let $L^{\prime \prime}$ be the dual to L^{\prime}. Then L and $L^{\prime \prime}$ are the same LP.

20.2.4 The Weak Duality Theorem

20.2.4.1 Weak duality theorem

Theorem 20.2.2. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is feasible for the primal LP and $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ is feasible for the dual LP, then

$$
\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i}
$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

20.2.4.2 Weak duality theorem - proof

Proof: By substitution from the dual form, and since the two solutions are feasible, we know that

$$
\sum_{j} c_{j} x_{j} \leq \sum_{j}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j} \leq \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \leq \sum_{i} b_{i} y_{i}
$$

(A) y being dual feasible implies $c^{T} \leq y^{T} A$
(B) x being primal feasible implies $A x \leq b$
(C) $\Rightarrow c^{T} x \leq\left(y^{T} A\right) x \leq y^{T}(A x) \leq y^{T} b$

20.2.4.3 Weak duality is weak...

(A) If apply the weak duality theorem on the dual program,
$(\mathrm{B}) \Longrightarrow \sum_{i=1}^{m}\left(-b_{i}\right) y_{i} \leq \sum_{j=1}^{n}-c_{j} x_{j}$,
(C) which is the original inequality in the weak duality theorem.
(D) Weak duality theorem does not imply the strong duality theorem which will be discussed next.

20.3 The strong duality theorem

20.3.0.1 The strong duality theorem

Theorem 20.3.1 (Strong duality theorem.). If the primal LP problem has an optimal solution $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ then the dual also has an optimal solution, $y^{*}=\left(y_{1}^{*}, \ldots, y_{m}^{*}\right)$, such that

$$
\sum_{j} c_{j} x_{j}^{*}=\sum_{i} b_{i} y_{i}^{*} .
$$

Proof is tedious and omitted.

20.4 Some duality examples

20.4.1 Maximum matching in Bipartite graph

20.4.1.1 Max matching in bipartite graph as LP

Input:G $=(L \cup R, \mathrm{E})$.

$$
\begin{array}{lll}
\max & \sum_{u v \in \mathrm{E}} x_{u v} & \\
\text { s.t. } & \sum_{u v \in \mathrm{E}} x_{u v} \leq 1 & \forall v \in \mathrm{G} . \\
& x_{u v} \geq 0 & \forall u v \in \mathrm{E}
\end{array}
$$

20.4.1.2 Max matching in bipartite graph as LP (Copy)

Input: $\mathbf{G}=(L \cup R, \mathrm{E})$.

\max	$\sum_{u v \in \mathrm{E}} x_{u v}$	
s.t.	$\sum_{u v \in \mathrm{E}} x_{u v} \leq 1$	$\forall v \in \mathrm{G}$.
	$x_{u v} \geq 0$	$\forall u v \in \mathrm{E}$

20.4.1.3 Max matching in bipartite graph as LP (Notes)

20.4.2 Shortest path
 20.4.2.1 Shortest path

$\max d_{\mathrm{t}}$

$$
\begin{array}{cll}
\text { s.t. } d_{\mathrm{s}} \leq 0 & \text { (A) } \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { : graph. s: source, } \mathrm{t} \text { : target } \\
& d_{u}+\omega(u, v) \geq d_{v} & \text { (B) } \forall(u, v) \in \mathrm{E} \text { : weight } \omega(u, v) \text { on edge. } \\
& \forall(u, v) \in \mathrm{E}, & \text { (C) } \mathrm{Q}: \text { Comp. shortest s-t path. } \\
& d_{x} \geq 0 \quad \forall x \in \mathrm{~V} . & \text { (D) No edges into s/out of } \mathrm{t} . \\
\text { Equivalently: } & \text { (E) } d_{x}: \operatorname{var}=\text { dist. } \mathrm{s} \text { to } x, \forall x \in \mathrm{~V} \text {. } \\
\text { max } d_{\mathrm{t}} & \text { (F) } \forall(u, v) \in \mathrm{E}: d_{u}+\omega(u, v) \geq d_{v} . \\
\text { s.t. } d_{\mathrm{s}} \leq 0 & \text { (G) Also } d_{\mathrm{s}}=0 \text {. } \\
& d_{v}-d_{u} \leq \omega(u, v) & \text { (H) Trivial solution: all variables } 0 . \\
& \text { (I) Target: find assignment max } d_{\mathrm{t}} . \\
& \forall(u, v) \in \mathrm{E}, & \text { (J) LP to solve this! } \\
d_{x} \geq 0 \quad \forall x \in \mathrm{~V} . &
\end{array}
$$

20.4.2.2 The dual

$\min \sum_{(u, v) \in \mathrm{E}} y_{u v} \omega(u, v)$
s.t. $\quad y_{\mathbf{s}}-\sum_{(\mathbf{s}, u) \in \mathbf{E}} y_{\mathbf{s} u} \geq 0$
$\sum_{(u, x) \in \mathrm{E}} y_{u x}-\sum_{(x, v) \in \mathrm{E}} y_{x v} \geq 0$

$$
\begin{aligned}
& \quad \forall x \in \mathrm{~V} \backslash\{\mathrm{~s}, \mathrm{t}\} \\
& \sum_{(u, \mathrm{t}) \in \mathrm{E}} y_{u \mathrm{t}} \geq 1 \\
& y_{u v} \geq 0, \quad \forall(u, v) \in \mathrm{E} \\
& y_{\mathrm{s}} \geq 0
\end{aligned}
$$

20.4.2.3 The dual - details

(A) $y_{u v}$: dual variable for the edge (u, v).
(B) y_{s} : dual variable for $d_{\mathrm{s}} \leq 0$
(C) Think about the $y_{u v}$ as a flow on the edge $y_{u v}$.
(D) Assume that weights are positive.
(E) LP is min cost flow of sending 1 unit flow from source s to t.
(F) Indeed... $\left({ }^{(* *)}\right.$ can be assumed to be hold with equality in the optimal solution...
(G) conservation of flow.
(H) Equation $\left({ }^{* * *}\right)$ implies that one unit of flow arrives to the sink t .
(I) $\left(^{*}\right)$ implies that at least y_{s} units of flow leaves the source.
(J) Remaining of LP implies that $y_{\mathrm{s}} \geq 1$.

20.4.2.4 Integrality

(A) In the previous example there is always an optimal solution with integral values.
(B) This is not an obvious statement.
(C) This is not true in general.
(D) If it were true we could solve NPC problems with LP.

20.4.3 Set cover...

20.4.3.1 Details in notes...

Set cover LP:

$$
\begin{array}{lll}
\min & \sum^{F_{j} \in \mathcal{F}} \mid \\
\text { s.t. } & x_{j} & \\
& \sum_{\substack{F_{j} \in \mathcal{F}, u_{i} \in F_{j}}} x_{j} \geq 1 & \forall u_{i} \in \mathrm{~S} \\
& x_{j} \geq 0 & \forall F_{j} \in \mathcal{F}
\end{array}
$$

20.4.4 Set cover dual is a packing LP...

20.4.4.1 Details in notes...

$$
\begin{array}{lll}
\max & \sum_{u_{i} \in \mathrm{~S}} y_{i} & \\
\text { s.t. } & \sum_{u_{i} \in F_{j}} y_{i} \leq 1 & \forall F_{j} \in \mathcal{F}, \\
& y_{i} \geq 0 & \forall u_{i} \in \mathrm{~S} .
\end{array}
$$

20.4.4.2 Network flow

$$
\begin{array}{lr}
\max & \sum_{(\mathbf{s}, v) \in \mathrm{E}} x_{\mathbf{s} \rightarrow v} \\
& x_{u \rightarrow v} \leq \mathrm{c}(u \rightarrow v) \\
& \sum_{(u, v) \in \mathrm{E}} x_{u \rightarrow v}-\sum_{(v, w) \in \mathrm{E}} x_{v \rightarrow w} \leq 0 \\
-\sum_{(u, v) \in \mathrm{E}} x_{u \rightarrow v}+\sum_{(v, w) \in \mathrm{E}} x_{v \rightarrow w} \leq 0 & \forall v \in \mathrm{~V} \backslash\{\mathrm{~s}, \mathrm{t}\} \\
0 \leq x_{u \rightarrow v} & \forall v \in \mathrm{~V} \backslash\{\mathrm{~s}, \mathrm{t}\} \\
& \forall(u, v) \in \mathrm{E}
\end{array}
$$

20.4.4.3 Dual of network flow...

$$
\begin{array}{ll}
\min & \\
\sum_{(u, v) \in \mathrm{E}} \mathrm{c}(u \rightarrow v) y_{u \rightarrow v} & \\
d_{u}-d_{v} \leq y_{u \rightarrow v} & \forall(u, v) \in \mathrm{E} \\
y_{u \rightarrow v} \geq 0 & \forall(u, v) \in \mathrm{E} \\
d_{\mathbf{s}}=1, \quad d_{\mathbf{t}}=0 . &
\end{array}
$$

Under right interpretation: shortest path (see notes).

20.4.5 Duality and min-cut max-flow

20.4.5.1 Details in class notes

Lemma 20.4.1. The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.

