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18.1: Linear Programming
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18.1.1: Introduction and Motivation
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18.1.1.1:Resource allocation in a factory
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A Factory Example

Problem
Suppose a factory produces two products I and II. Each requires
three resources A,B,C.

1 Producing one unit of Product I requires 1 unit each of resources
A and C.

2 One unit of Product II requires 1 unit of resource B and 1 units
of resource C.

3 We have 200 units of A, 300 units of B, and 400 units of C.

4 Product I can be sold for $1 and product II for $6.

How many units of product I and product II should the factory
manufacture to maximize profit?

Solution: Formulate as a linear program.
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A Factory Example

Problem
Suppose a factory produces two
products I and II. Each requires
three resources A,B,C.

1 Producing unit I: Req. 1 unit
of A, C.

2 Producing unit II: Requ. 1
unit of B,C.

3 Have A: 200, B: 300 , and
C: 400.

4 Price I: $1, and II: $6.

How many units of I and II to
manufacture to max profit?
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A Factory Example

Problem
Suppose a factory produces two
products I and II. Each requires
three resources A,B,C.

1 Producing unit I: Req. 1 unit
of A, C.

2 Producing unit II: Requ. 1
unit of B,C.

3 Have A: 200, B: 300 , and
C: 400.

4 Price I: $1, and II: $6.

How many units of I and II to
manufacture to max profit?

max xI + 6xII

s.t. xI ≤ 200 (A)

xII ≤ 300 (B)

xI + xII ≤ 400 (C)

xI ≥ 0

xII ≥ 0
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Linear Programming Formulation

Let us produce x1 units of product I and x2 units of product II. Our
profit can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200
x2 ≤ 300
x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?
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Graphical interpretation of LP
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Graphical interpretation of LP

x2 ≥ 0

x1 ≥ 0x1 ≤ 200

x2 ≤ 300
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Graphical interpretation of LP
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18.1.1.2:More examples...
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Economic planning
Guns/nuclear-bombs/napkins/star-wars/professors/butter/mice problem

1 Penguina: a country.
2 Ruler need to decide how to allocate resources.
3 Maximize benefit.
4 Budget allocation

(i) Nuclear bomb has a tremendous positive effect on security
while being expensive.

(ii) Guns, on the other hand, have a weaker effect.
5 Penguina need to prove a certain level of security:

xgun + 1000 ∗ xnuclear−bomb ≥ 1000,
where xguns: # guns xnuclear−bomb: # nuclear-bombs
constructed.

6 100 ∗ xgun + 1000000 ∗ xnuclear−bomb ≤ xsecurity

xsecurity: total amount spent on security.
100/1, 000, 000: price of producing a single gun/nuclear bomb.
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Linear programming

An instance of linear programming (LP):

1 x1, . . . , xn: variables.

2 For j = 1, . . . ,m: aj1x1 + . . . + ajnxn ≤ bj : linear
inequality.

3 i.e., constraint.

4 Q: ∃ assignment of values to x1, . . . , xn such that all
inequalities are satisfied?

5 Many possible solutions... Want solution that maximizes some
linear quantity.

6 objective function: linear inequality being maximized.
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Linear programming – example

a11x1 + . . . + a1nxn ≤ b1
a21x1 + . . . + a2nxn ≤ b2
. . .
am1x1 + . . . + amnxn ≤ bm
max c1x1 + . . . + cnxn.

Sariel (UIUC) New CS473 13 Fall 2015 13 / 40



Linear Programming: A History

1 First formalized applied to problems in economics by Leonid
Kantorovich in the 1930s

1 However, work was ignored behind the Iron Curtain and
unknown in the West

2 Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

3 First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947

4 Kantorovich and Koopmans receive Nobel Prize for economics in
1975 ; Dantzig, however, was ignored

1 Koopmans contemplated refusing the Nobel Prize to protest
Dantzig’s exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
“a means for apologists of capitalism”
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Network flow via linear programming

Input: G = (V,E) with source s and sink t, and capacities c(·) on
the edges. Compute max flow in G.

∀(u, v) ∈ E 0 ≤ xu→v

xu→v ≤ c(u → v)

∀v ∈ V \ {s, t}
∑

(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≤ 0

∑
(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≥ 0

maximizing
∑

(s,u)∈E xs→u
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Maximum weight matching

Input: G = (V,E) and weight w(·) on the edges. Compute max
matching in G.

∀uv ∈ E 0 ≤ xuv

xuv ≤ 1

∀v ∈ V
∑
uv∈E

xuv ≤ 1

max
∑

uv∈E w(uv)xuv
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18.1.1.3:Shortest path as a LP
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18.2: The Simplex Algorithm
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18.2.1: Linear program where all the variables are
positive
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Rewriting an LP

max
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

1 Rewrite: so every variable is non-negative.

2 Replace variable xi by x′
i and x′′

i , where new constraints are:
xi = x′

i − x′′
i , x′

i ≥ 0 and x′′
i ≥ 0.

3 Example: The (silly) LP 2x + y ≥ 5 rewritten:
2x′ − 2x′′ + y′ − y′′ ≥ 5,
x′ ≥ 0, y′ ≥ 0,
x′′ ≥ 0, and
y′′ ≥ 0.
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Rewriting an LP into standard form

Lemma
Given an instance I of LP, one can rewrite it into an equivalent LP,
such that all the variables must be non-negative. This takes linear
time in the size of I.

An LP where all variables must be non-negative is in standard form
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18.2.2: Standard form
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Standard form of LP

A linear program in standard form.

max
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, . . . , n.
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Standard form of LP
Because everything is clearer when you use matrices. Not.

A=


a11 a12 . . . a1(n−1) a1n

a21 a22 . . . a2(n−1) a2n

... . . . . . . . . .
...

a(m−1)1 a(m−1)2 . . . a(m−1)(n−1) a(m−1)n

am1 am2 . . . am(n−1) amn

,

c, b and A:
prespecified.
x is vector of
unknowns.
Solve LP for
x.

LP in standard form.

(Matrix notation.)

max cTx

s.t. Ax ≤ b.

x ≥ 0.

c=

 c1
...
cn

, b=

 b1
...

bm

, x=


x1

x2
...

xn−1

xn

.
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18.2.3: Slack Form
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Slack Form

1 Next rewrite LP into slack
form.

2 Every inequality becomes
equality.

3 All variables must be positive.

4 See resulting form on the
right.

max cTx

subject to Ax = b.

x ≥ 0.

1 New slack variables. Rewrite inequality:
∑n

i=1 aixi ≤ b. As:

xn+1 = b −
n∑

i=1

aixi

xn+1 ≥ 0.

2 Value of slack variable xn+1 encodes how far is the original
inequality for holding with equality.
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Slack form...

1 LP now made of equalities of the form:
xn+1 = b −

∑n
i=1 aixi

2 Variables on left: basic variables.
3 Variables on right: nonbasic variables.
4 LP in this form is in slack form.

Linear program in slack form.

max z = v +
∑
j∈N

cjxj,

s.t. xi = bi −
∑
j∈N

aijxj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.
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Basic/nonbasic

Basic variables

Nonbasic variables

max z = 29− 1

9
x3 −

1

9
x5 −

2

9
x6

x1 = 8 +
1

6
x3 +

1

6
x5 −

1

3
x6

x2 = 4− 8

3
x3 −

2

3
x5 +

1

3
x6

x4 = 18− 1

2
x3 +

1

2
x5
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Slack form formally
Because everything is clearer when you use tuples. Not.

The slack form is defined by a tuple (N,B,A, b, c, v).

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N | - number of original variables
b, c - two vectors of constants
m = |B| - number of basic variables

(i.e., number of inequalities)
A = {aij} - The matrix of coefficients
N ∪ B = {1, . . . , n + m}
v - objective function constant.

Sariel (UIUC) New CS473 29 Fall 2015 29 / 40



Slack form formally
Final form

max z = v +
∑
j∈N

cjxj,

s.t. xi = bi −
∑
j∈N

aijxj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.
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Example

Consider the following LP which is in slack form.

max z = 29 −
1

9
x3 −

1

9
x5 −

2

9
x6

x1 = 8 +
1

6
x3 +

1

6
x5 −

1

3
x6

x2 = 4 −
8

3
x3 −

2

3
x5 +

1

3
x6

x4 = 18 −
1

2
x3 +

1

2
x5
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Example

...translated into tuple form (N,B,A, b, c, v).

B = {1, 2, 4} , N = {3, 5, 6}

A =

 a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

 −1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0


b =

 b1
b2
b4

 =

 8
4
18

 c =

 c3
c5
c6

 =

 −1/9
−1/9
−2/9


v = 29.

Note that indices depend on the sets N and B, and also that the
entries in A are negation of what they appear in the slack form.
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Another example...

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2,x3 ≥ 0

Transform into slack form...

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0
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18.2.4: The Simplex algorithm by example
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The Simplex algorithm by example

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2,x3 ≥ 0

Next, we introduce slack vari-
ables, for example, rewriting
2x1 + 3x2 + x3 ≤ 5 as
the constraints: w1 ≥ 0 and
w1 = 5 − 2x1 − 3x2 − x3.
The resulting LP in slack form
is

⇒

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0
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Example continued I...

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0

1 w1, w2, w3: slack variables.
(Also currently basic
variables).

2 Consider the slack
representation trivial
solution...
all non-basic variables
assigned zero:
x1 = x2 = x3 = 0.

1 =⇒ w1 = 5, w2 = 11 and w3 = 8.

2 Feasible!
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Example continued II...

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0

1 x1 = x2 = x3 = 0
=⇒ w1 = 5,
w2 = 11 and w3 = 8.

2 All wi positive – change
xi a bit does not change
feasibility.

1 z = 5x1 + 4x2 + 3x3: want to increase values of x1s... since
z increases (since 5 > 0).

2 How much to increase x1???

3 Careful! Might break feasibility.

4 Increase x1 as much as possible without breaking feasibility!
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Example continued III...

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0

Set x2 = x3 = 0

w1 = 5 − 2x1 − 3x2 − x3

= 5 − 2x1

w2 = 11 − 4x1 − x2 − 2x3

= 11 − 4x1

w3 = 8 − 3x1 − 4x2 − 2x3

= 8 − 3x1.

1 Want to increase x1 as much as possible, as long as:

w1 = 5 − 2x1 ≥ 0,

w2 = 11 − 4x1 ≥ 0,

and w3 = 8 − 3x1 ≥ 0.
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Example continued IV...

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0

1 Constraints:

w1 = 5 − 2x1 ≥ 0,

w2 = 11 − 4x1 ≥ 0,

and w3 = 8 − 3x1 ≥ 0.

2 x1 ≤ 2.5,
x1 ≤ 11/4 = 2.75 and
x1 ≤ 8/3 = 2.661 Maximum we can increase x1 is 2.5.

2 x1 = 2.5, x2 = 0, x3 = 0, w1 = 0, w2 = 1, w3 = 0.5
⇒ z = 5x1 + 4x2 + 3x3 = 12.5.

3 Improved target!

4 A nonbasic variable x1 is now non-zero. One basic variable (w1)
became zero.
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Example continued IV...
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Example continued V...

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3, w1, w2, w3 ≥ 0

1 x1 = 2.5, x2 =
0, x3 = 0, w1 =
0, w2 = 1, w3 = 0.5

2 A nonbasic variable x1 is
now non-zero. One basic
variable (w1) became
zero.

1 Want to keep invariant: All non-basic variables in current
solution are zero...

2 Idea: Exchange x1 and w1!

3 Consider equality LP with w1 and x1.
w1 = 5 − 2x1 − 3x2 − x3.

4 Rewrite as: x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5 x3.
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Example continued VI...
Substituting x1 = 5 − 2x1 − 3x2 − x3, the new LP

max z = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.

1 nonbasic variables: {w1, x2, x3}
basic variables: {x1, w2, w3}.

2 Trivial solution: all nonbasic variables = 0 is feasible.

3 w1 = x2 = x3 = 0. Value: z = 12.5.
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Example continued VII...

1 Rewriting stop done is called pivoting.

2 pivoted on x1.

3 Continue pivoting till reach optimal solution.
max z = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.

4 Can not pivot on w1, since if w1 increase, then z decreases.
Bad.

5 Can not pivot on x2 (coefficient in objective function is −3.5).

6 Can only pivot on x3 since its coefficient ub objective 0.5.
Positive number.
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Example continued VIII...

max z = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.
1 Can only pivot on x3...
2 x1 can only be increased to 1 before w3 = 0.
3 Rewriting the equality for w3 in LP:

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3,
4 ...for x3: x3 = 1 + 3w1 + x2 − 2w3.
5 Substituting into LP, we get the following LP.

max z = 13 − w1 − 3x2 − w3

s.t. x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3
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Example continued – can this be further improved?

max z = 13 − w1 − 3x2 − w3

s.t. x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

1 NO!

2 All coefficients in objective negative (or zero).

3 trivial solution (all nonbasic variables zero) is maximal.
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Pivoting changes nothing

Observation
Every pivoting step just rewrites the LP into EQUIVALENT LP.
When LP objective can no longer be improved because of rewrite, it
implies that the original LP objective function can not be increased
any further.
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Simplex algorithm – summary

1 This was an informal description of the simplex algorithm.

2 At each step pivot on a nonbasic variable that improves
objective function.

3 Till reach optimal solution.

4 Problem: Assumed that the starting (trivial) solution (all zero
nonbasic vars) is feasible.
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18.2.4.1:Starting somewhere
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Starting somewhere...

max z = v +
∑
j∈N

cjxj,

s.t. xi = bi −
∑
j∈N

aijxj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.

1 L: Transformed LP to slack
form.

2 Simplex starts from feasible
solution and walks around till
reaches opt.

3 L might not be feasible at
all.

4 Example on left, trivial sol is
not feasible, if ∃bi < 0.

Idea: Add a variable x0, and minimize it!

min x0

s.t. xi = x0 + bi −
∑
j∈N

aijxj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.
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Finding a feasible solution...

1 L′ = Feasible(L) (see previous slide).

2 Add new variable x0 and make it large enough.

3 x0 = max(−mini bi, 0), ∀i > 0, xi = 0: feasible!

4 LPStartSolution(L′): Solution of Simplex to L′.

5 If x0 = 0 in solution then L feasible. Have valid basic solution.

6 If x0 > 0 then LP not feasible. Done.
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Lemma...

Lemma
LP L is feasible ⇐⇒ optimal objective value of LP L′ is zero.

Proof.
A feasible solution to L is immediately an optimal solution to L′ with
x0 = 0, and vice versa. Namely, given a solution to L′ with x0 = 0
we can transform it to a feasible solution to L by removing x0.
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Technicalities, technicalities everywhere

1 Starting solution for L′, generated by LPStartSolution(L)..

2 .. not legal in slack form as non-basic variable x0 assigned
non-zero value.

3 Trick: Immediately pivoting on x0 when running Simplex(L′).

4 First try to decrease x0 as much as possible.
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Notes

Sariel (UIUC) New CS473 52 Fall 2015 52 / 40



Notes

Sariel (UIUC) New CS473 53 Fall 2015 53 / 40



Notes

Sariel (UIUC) New CS473 54 Fall 2015 54 / 40



Notes

Sariel (UIUC) New CS473 55 Fall 2015 55 / 40


	Linear Programming
	Introduction and Motivation

	The Simplex Algorithm
	Linear program where all the variables are positive
	Standard form
	Slack Form
	The Simplex algorithm by example


