A Factory Example

Problem
Suppose a factory produces two products I and II. Each requires three resources A, B, C.

1. Producing one unit of Product I requires 1 unit each of resources A and C.
2. One unit of Product II requires 1 unit of resource B and 1 unit of resource C.
3. We have 200 units of A, 300 units of B, and 400 units of C.
4. Product I can be sold for $1 and product II for $6.

How many units of product I and product II should the factory manufacture to maximize profit?

Solution: Formulate as a linear program.

Formulate as a linear program.

\[
\begin{align*}
\text{max} & \quad 1x_I + 6x_{II} \\
\text{s.t.} & \quad x_I \leq 200 \quad (A) \\
& \quad x_{II} \leq 300 \quad (B) \\
& \quad x_I + x_{II} \leq 400 \quad (C) \\
& \quad x_I \geq 0 \\
& \quad x_{II} \geq 0
\end{align*}
\]
Linear Programming Formulation

Let us produce x_1 units of product I and x_2 units of product II. Our profit can be computed by solving

$$\text{maximize } x_1 + 6x_2$$

subject to

$$x_1 \leq 200$$
$$x_2 \leq 300$$
$$x_1 + x_2 \leq 400$$
$$x_1, x_2 \geq 0$$

What is the solution?

Economic planning

Guns/nuclear-bombs/napkins/star-wars/professors/butter/mice problem

1. Penguina: a country.
2. Ruler need to decide how to allocate resources.
3. Maximize benefit.
4. Budget allocation
 (i) Nuclear bomb has a tremendous positive effect on security while being expensive.
 (ii) Guns, on the other hand, have a weaker effect.
5. Penguina need to prove a certain level of security:
 $$x_{\text{gun}} + 1000 \cdot x_{\text{nuclear-bomb}} \geq 1000,$$
 where x_{gun}: # guns
 $x_{\text{nuclear-bomb}}$: # nuclear-bombs constructed.
6. $100 \cdot x_{\text{gun}} + 1000000 \cdot x_{\text{nuclear-bomb}} \leq x_{\text{security}}$
 x_{security}: total amount spent on security.
 $100/1,000,000$: price of producing a single gun/nuclear bomb.

Linear programming

An instance of linear programming (LP):

1. x_1, \ldots, x_n: variables.
2. For $j = 1, \ldots, m$: $a_{j1}x_1 + \ldots + a_{jn}x_n \leq b_j$: linear inequality.
3. i.e., constraint.
4. Q: \exists assignment of values to x_1, \ldots, x_n such that all inequalities are satisfied?
5. Many possible solutions... Want solution that maximizes some linear quantity.
6. objective function: linear inequality being maximized.
Linear programming – example

\[\begin{align*}
a_{11}x_1 + \ldots + a_{1n}x_n & \leq b_1 \\
a_{21}x_1 + \ldots + a_{2n}x_n & \leq b_2 \\
\vdots & \\
a_{m1}x_1 + \ldots + a_{mn}x_n & \leq b_m \\
\end{align*} \]

\[\max c_1x_1 + \ldots + c_nx_n. \]

Linear Programming: A History

1. First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
 1.1 However, work was ignored behind the Iron Curtain and unknown in the West
2. Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
3. First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
4. Kantorovich and Koopmans receive Nobel Prize for economics in 1975; Dantzig, however, was ignored
 4.1 Koopmans contemplated refusing the Nobel Prize to protest Dantzig’s exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as “a means for apologists of capitalism”

Network flow via linear programming

Input: \(G = (V, E) \) with source \(s \) and sink \(t \), and capacities \(c(\cdot) \) on the edges. Compute max flow in \(G \).

\[\begin{align*}
\forall (u, v) \in E & \quad 0 \leq x_{u\rightarrow v} \\
\quad x_{u\rightarrow v} & \leq c(u \rightarrow v) \\
\forall v \in V \setminus \{s, t\} & \quad \sum_{(u, v) \in E} x_{u\rightarrow v} - \sum_{(v, w) \in E} x_{v\rightarrow w} \leq 0 \\
\forall v \in V \setminus \{s, t\} & \quad \sum_{(u, v) \in E} x_{u\rightarrow v} - \sum_{(v, w) \in E} x_{v\rightarrow w} \geq 0 \\
\end{align*} \]

maximizing \(\sum_{(s, u) \in E} x_{s\rightarrow u} \)

Maximum weight matching

Input: \(G = (V, E) \) and weight \(w(\cdot) \) on the edges. Compute max matching in \(G \).

\[\begin{align*}
\forall uv \in E & \quad 0 \leq x_{uv} \\
\quad x_{uv} & \leq 1 \\
\forall v \in V & \quad \sum_{uv \in E} x_{uv} \leq 1 \\
\max & \quad \sum_{uv \in E} w(uv)x_{uv} \\
\end{align*} \]
Rewriting an LP

\[
\max \sum_{j=1}^{n} c_j x_j \\
\text{subject to } \sum_{j=1}^{n} a_{ij} x_j \leq b_i \text{ for } i = 1, 2, \ldots, m \\
x_j \geq 0 \text{ for } j = 1, \ldots, n.
\]

1. Rewrite: so every variable is non-negative.
2. Replace variable \(x\) by \(x'\) and \(x''\), where new constraints are:
 \(x = x' - x''\), \(x' \geq 0\) and \(x'' \geq 0\).
3. Example: The (silly) LP \(2x + y \geq 5\) rewritten:
 \(2x' - 2x'' + y' - y'' \geq 5\),
 \(x' \geq 0\), \(y' \geq 0\),
 \(x'' \geq 0\), and \(y'' \geq 0\).

Rewriting an LP into standard form

Lemma

Given an instance \(I\) of LP, one can rewrite it into an equivalent LP, such that all the variables must be non-negative. This takes linear time in the size of \(I\).

An LP where all variables must be non-negative is in \textbf{standard form}

Standard form of LP

\textbf{A linear program in standard form.}

\[
\max \sum_{j=1}^{n} c_j x_j \\
\text{subject to } \sum_{j=1}^{n} a_{ij} x_j \leq b_i \text{ for } i = 1, 2, \ldots, m \\
x_j \geq 0 \text{ for } j = 1, \ldots, n.
\]

Standard form of LP

Because everything is clearer when you use matrices. Not.

\[
\begin{align*}
A &= \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{(m-1)1} & a_{(m-1)2} & \cdots & a_{(m-1)(n-1)} & a_{(m-1)n} \\
a_{m1} & a_{m2} & \cdots & a_{m(n-1)} & a_{mn}
\end{pmatrix}, \\
c, b \text{ and } x \text{ are vectors.}
\end{align*}
\]

\[
\begin{align*}
\text{Solve LP for } x.
\end{align*}
\]

LP in standard form.

\textbf{(Matrix notation.)}

\[
\max \quad c^T x \\
\text{s.t.} \quad A x \leq b \\
x \geq 0.
\]

\[
\begin{align*}
c &= \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \\
b &= \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \\
x &= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}.
\end{align*}
\]
Slack Form

1. Next rewrite LP into slack form.
2. Every inequality becomes equality.
3. All variables must be positive.
4. See resulting form on the right.

\[
\begin{align*}
\text{max} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \geq 0.
\end{align*}
\]

1. New slack variables. Rewrite inequality:
\[
\sum_{i=1}^{n} a_i x_i \leq b. \quad \text{As:}
\]
\[
x_{n+1} = b - \sum_{i=1}^{n} a_i x_i
\]
\[
x_{n+1} \geq 0.
\]
2. Value of slack variable \(x_{n+1}\) encodes how far is the original inequality for holding with equality.

Basic/nonbasic

The slack form is defined by a tuple \((N, B, A, b, c, v)\).
\(B\) - Set of indices of basic variables
\(N\) - Set of indices of nonbasic variables
\(n = |N|\) - number of original variables
\(b, c\) - two vectors of constants
\(m = |B|\) - number of basic variables
\(A = \{a_{ij}\}\) - The matrix of coefficients
\(N \cup B = \{1, \ldots, n + m\}\)
\(v\) - objective function constant.
Slack form formally

Final form

$$\text{max } z = v + \sum_{j \in N} c_j x_j,$$

s.t. $x_i = b_i - \sum_{j \in N} a_{ij} x_j$ for $i \in B$,

$$x_i \geq 0, \quad \forall i = 1, \ldots, n + m.$$

Example

Consider the following LP which is in slack form.

$$\begin{align*}
\text{max } z &= 29 - \frac{1}{9} x_3 - \frac{1}{9} x_5 - \frac{2}{9} x_6 \\
x_1 &= 8 + \frac{1}{6} x_3 + \frac{1}{6} x_5 - \frac{1}{3} x_6 \\
x_2 &= 4 - \frac{3}{3} x_3 - \frac{1}{3} x_5 + \frac{3}{3} x_6 \\
x_4 &= 18 - \frac{1}{2} x_3 + \frac{1}{2} x_5
\end{align*}$$

Example

...translated into tuple form (N, B, A, b, c, v).

$B = \{1, 2, 4\}, N = \{3, 5, 6\}$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/9 \\ -1/9 \\ -2/9 \end{pmatrix}$$

$v = 29.$

Note that indices depend on the sets N and B, and also that the entries in A are negation of what they appear in the slack form.

Another example...

$$\begin{align*}
\text{max } z &= 5 x_1 + 4 x_2 + 3 x_3 \\
\text{s.t. } 2 x_1 + 3 x_2 + x_3 &\leq 5 \\
4 x_1 + x_2 + 2 x_3 &\leq 11 \\
3 x_1 + 4 x_2 + 2 x_3 &\leq 8 \\
x_1, x_2, x_3 &\geq 0
\end{align*}$$

Transform into slack form...

$$\begin{align*}
\text{max } z &= 5 x_1 + 4 x_2 + 3 x_3 \\
\text{s.t. } w_1 &= 5 - 2 x_1 - 3 x_2 - x_3 \\
w_2 &= 11 - 4 x_1 - x_2 - 2 x_3 \\
w_3 &= 8 - 3 x_1 - 4 x_2 - 2 x_3 \\
x_1, x_2, x_3, w_1, w_2, w_3 &\geq 0
\end{align*}$$
The Simplex algorithm by example

\[
\begin{align*}
\text{max} & \quad 5x_1 + 4x_2 + 3x_3 \\
\text{s.t.} & \quad 2x_1 + 3x_2 + x_3 \leq 5 \\
& \quad 4x_1 + x_2 + 2x_3 \leq 11 \\
& \quad 3x_1 + 4x_2 + 2x_3 \leq 8 \\
& \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]

Next, we introduce slack variables, for example, rewriting 2\(x_1 + 3x_2 + x_3 \leq 5\) as the constraints: \(w_1 \geq 0\) and \(w_1 = 5 - 2x_1 - 3x_2 - x_3\). The resulting LP in slack form is

\[
\begin{align*}
\text{max} & \quad z = 5x_1 + 4x_2 + 3x_3 \\
\text{s.t.} & \quad w_1 = 5 - 2x_1 - 3x_2 - x_3 \\
& \quad w_2 = 11 - 4x_1 - x_2 - 2x_3 \\
& \quad w_3 = 8 - 3x_1 - 4x_2 - 2x_3 \\
& \quad x_1, x_2, x_3, w_1, w_2, w_3 \geq 0
\end{align*}
\]

Example continued I...

1. \(w_1, w_2, w_3\): slack variables. (Also currently basic variables).
2. Consider the slack representation trivial solution...
 all non-basic variables assigned zero:
 \[x_1 = x_2 = x_3 = 0.\]
3. Feasible!
4. Objection function value: \(z = 0\).
5. Further improve the value of objective function (i.e., \(z\)).
 While keeping feasibility.

Example continued II...

1. \(x_1 = x_2 = x_3 = 0\)
 \[\implies w_1 = 5, w_2 = 11 \text{ and } w_3 = 8.\]
2. All \(w_i\) positive – change \(x_j\) a bit does not change feasibility.
3. \(z = 5x_1 + 4x_2 + 3x_3\): want to increase values of \(x_1\)...
 since \(z\) increases (since \(5 > 0\)).
4. How much to increase \(x_1\)???
6. Increase \(x_1\) as much as possible without breaking feasibility!

Example continued III...

1. Want to increase \(x_1\) as much as possible, as long as:
 \[w_1 = 5 - 2x_1 \geq 0,\]
 \[w_2 = 11 - 4x_1 \geq 0,\]
 and \(w_3 = 8 - 3x_1 \geq 0.\)
Example continued IV...

1. Constraints:

\[
\begin{align*}
\text{max} & \quad z = 5x_1 + 4x_2 + 3x_3 \\
\text{s.t.} & \quad w_1 = 5 - 2x_1 - 3x_2 - x_3 \\
& \quad w_2 = 11 - 4x_1 - x_3 - 2x_3 \\
& \quad w_3 = 8 - 3x_1 - 4x_2 - 2x_3 \\
& \quad x_1, x_2, x_3, w_1, w_2, w_3 \geq 0
\end{align*}
\]

1. Maximum we can increase \(x_1 \) is \(2.5 \leq 8/3 = 2.66 \)
2. \(x_1 = 2.5, x_2 = 0, x_3 = 0, w_1 = 0, w_2 = 1, w_3 = 0.5 \)
 \[\Rightarrow z = 5x_1 + 4x_2 + 3x_3 = 12.5.\]
3. Improved target!
4. A nonbasic variable \(x_1 \) is now non-zero. One basic variable \((w_1) \) became zero.

Example continued V...

1. \(x_1 = 2.5, x_2 = 0, x_3 = 0, w_1 = 0, w_2 = 1, w_3 = 0.5 \)
2. A nonbasic variable \(x_1 \) is now non-zero. One basic variable \((w_1) \) became zero.

Example continued VI...

Substituting \(x_1 = 5 - 2x_1 - 3x_2 - x_3 \), the new

\[
\begin{align*}
\text{max} & \quad z = 12.5 - 2.5w_1 - 3.5x_2 + 0.5x_3 \\
x_1 & = 2.5 - 0.5w_1 - 1.5x_2 - 0.5x_3 \\
w_2 & = 1 + 2w_1 + 5x_2 \\
w_3 & = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3
\end{align*}
\]

1. nonbasic variables: \(\{w_1, x_2, x_3\} \)
 basic variables: \(\{x_1, w_2, w_3\} \).
2. Trivial solution: all nonbasic variables = 0 is feasible.
3. \(w_1 = x_2 = x_3 = 0 \). Value: \(z = 12.5 \).

Example continued VII...

1. Rewriting stop done is called **pivoting**.
2. pivoted on \(x_1 \).

\[
\begin{align*}
\text{max} & \quad z = 12.5 - 2.5w_1 - 3.5x_2 + 0.5x_3 \\
x_1 & = 2.5 - 0.5w_1 - 1.5x_2 - 0.5x_3 \\
w_2 & = 1 + 2w_1 + 5x_2 \\
w_3 & = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3
\end{align*}
\]

4. Can not pivot on \(w_1 \), since if \(w_1 \) increase, then \(z \) decreases. Bad.
5. Can not pivot on \(x_2 \) (coefficient in objective function is \(-3.5\)).
6. Can only pivot on \(x_3 \) since its coefficient ub objective 0.5. Positive number.
Example continued VIII...

$$\begin{align*}
\text{max} & \quad z = 12.5 - 2.5w_1 - 3.5x_2 + 0.5x_3 \\
x_1 &= 2.5 - 0.5w_1 - 1.5x_2 - 0.5x_3 \\
w_2 &= 1 + 2w_1 + 5x_2 \\
w_3 &= 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3.
\end{align*}$$

1. Can only pivot on x_3...
2. x_1 can only be increased to 1 before $w_3 = 0$.
3. Rewriting the equality for w_3 in LP:
 $$w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3.$$
4. ...for x_3: $x_3 = 1 + 3w_1 + x_2 - 2w_3$.
5. Substituting into LP, we get the following LP.

$$\begin{align*}
\text{max} & \quad z = 13 - w_1 - 3x_2 - w_3 \\
s.t. & \quad x_1 = 2 - 2w_1 - 2x_2 + w_3 \\
 & \quad w_2 = 1 + 2w_1 + 5x_2 \\
 & \quad x_3 = 1 + 3w_1 + x_2 - 2w_3
\end{align*}$$

Pivoting changes nothing

Observation
Every pivoting step just rewrites the LP into EQUIVALENT LP.
When LP objective can no longer be improved because of rewrite, it implies that the original LP objective function can not be increased any further.

Example continued – can this be further improved?

$$\begin{align*}
\text{max} & \quad z = 13 - w_1 - 3x_2 - w_3 \\
s.t. & \quad x_1 = 2 - 2w_1 - 2x_2 + w_3 \\
 & \quad w_2 = 1 + 2w_1 + 5x_2 \\
 & \quad x_3 = 1 + 3w_1 + x_2 - 2w_3
\end{align*}$$

1. NO!
2. All coefficients in objective negative (or zero).
3. trivial solution (all nonbasic variables zero) is maximal.

Simplex algorithm – summary

1. This was an informal description of the simplex algorithm.
2. At each step pivot on a nonbasic variable that improves objective function.
3. Till reach optimal solution.
4. Problem: Assumed that the starting (trivial) solution (all zero nonbasic vars) is feasible.
Starting somewhere...

1. L: Transformed LP to slack form.
2. Simplex starts from feasible solution and walks around till reaches opt.
3. L might not be feasible at all.
4. Example on left, trivial sol is not feasible, if $\exists b_i < 0$.

Idea: Add a variable x_0, and minimize it!

\[\begin{align*}
\min & \quad x_0 \\
\text{s.t.} & \quad x_i = x_0 + b_i - \sum_{j \in N} a_{ij}x_j \quad \text{for } i \in B, \\
& \quad x_i \geq 0, \quad \forall i = 1, \ldots, n + m.
\end{align*} \]

Finding a feasible solution...

1. $L' = \text{Feasible}(L)$ (see previous slide).
2. Add new variable x_0 and make it large enough.
3. $x_0 = \max(-\min_i b_i, 0), \quad \forall i > 0, \ x_i = 0$: feasible!
4. $\text{LPStartSolution}(L')$: Solution of Simplex to L'.
5. If $x_0 = 0$ in solution then L feasible. Have valid basic solution.
6. If $x_0 > 0$ then LP not feasible. Done.

Technicalities, technicalities everywhere

1. Starting solution for L', generated by $\text{LPStartSolution}(L)$.
2. .. not legal in slack form as non-basic variable x_0 assigned non-zero value.
3. Trick: Immediately pivoting on x_0 when running Simplex(L').
4. First try to decrease x_0 as much as possible.

Lemma...

Lemma

LP L is feasible \iff optimal objective value of LP L' is zero.

Proof.

A feasible solution to L is immediately an optimal solution to L' with $x_0 = 0$, and vice versa. Namely, given a solution to L' with $x_0 = 0$ we can transform it to a feasible solution to L by removing x_0. \qed