
NEW CS 473: Theory II, Fall 2015

Matchings I
Lecture 16
October 20, 2015

1/51

Matching, perfect, maximal

Definition
For a graph G = (V,E) a set M ⊆ E is a matching if no
pair of edges of M has a common vertex.

Definition
A matching is perfect if it covers all the vertices of G . For a
weight function w , which assigns real weight to the edges of
G , a matching M is a maximal weight matching, if M is a
matching and w(M) =

∑
e∈M w(e) is maximal.

Definition
If there is no weight on the edges, we consider the weight of
every edge to be one, and in this case, we are trying to
compute a maximum size matching.

2/51

The problem

Problem
Given a graph G and a weight function on the edges, compute
the maximum weight matching in G.

3/51

Some definitions

1. M : matching.

2. e ∈ M is a matching edgematching!matching edge.

3. e′ ∈ E(G) \M is free.

4. v ∈ V(G) matched ⇐⇒ adjacent to edge in M .

5. unmatched vertex v ′ is free.

6. alternating path: a simple path edges alternating
between matched and free edges.

7. alternating cycle...

8. length of a path/cycle is the number of edges in it.

4/51

Example

e
e′

1

2 3

4

5

6

e
e′

1

2 3

4

5

6

e
e′

1

2 3

4

5

6

(A) The input graph.(B) A maximal matching in G. The edge
e is free, and vertices 1 and 4 are free.(C) An alternating

path.(D) The resulting matching from applying the
augmenting path.

5/51

Augmenting paths

Definition
Path π = v1v2, . . . , v2k+2 is augmenting path for matching
M (for graph G):

(i) π is simple,
(ii) for all i , ei = vivi+1 ∈ E(G),
(iii) v1 and v2k+2 are free vertices for M ,
(iv) e1, e3, . . . , e2k+1 /∈ M , and
(v) e2, e4, . . . , e2k ∈ M .

After applying both augmenting path, we end up with
maximum matching here.

6/51

Augmenting paths improve things

Lemma
M : matching. π: augmenting path relative to M . Then

M ′ = M ⊕ π = {e ∈ E | e ∈ (M \ π) ∪ (π \M)}

is a matching of size |M|+ 1.

Proof.

1. Remove π from graph.

2. Leftover matching: |M| − |M ∩ π|.
3. Add back π. Add free edges of π to matching.

4. M ′: New set of edges... a matching.

5. |M ′| = |M| − |M ∩ π|+ |π \M| = |M|+ 1.

7/51

Many augmenting paths

Lemma
M : matching. T : maximum matching. k = |T | − |M|.
Then M has k vertex disjoint augmenting paths.

Proof.

1. E ′ = M ⊕ T . H = (V ,E ′).

2. ∀v ∈ V(H): d(v) ≤ 2.

3. H : collection of alternating paths and cycles.

4. cycles are even length.

5. k more edges of T in M ⊕ T than of M .

6. For any cycle C ∈ H : |C ∩M| = |C ∩ T |.
7. For a path π ∈ H : |π∩M| ≤ |π∩T | ≤ |π∩M|+ 1.

8. For augmenting path π: |π ∩ T | = |π ∩M|+ 1.

9. =⇒ Must be k augmenting paths in H .
8/51

Many augmenting paths

Lemma
M : matching. T : maximum matching. k = |T | − |M|.
At least one augmenting path for M of length ≤ u/k − 1,
where u = 2(|T |+ |M|).

Proof.

1. E ′ = M ⊕ T . H = (V ,E ′).

2. u = |V(H)| ≤ 2
(
|T |+ |M|

)
.

3. By previous lemma: There are k augmenting paths in H .

4. If all augmenting paths were of length ≥ u/k
5. =⇒ total number of vertices in H ≥ (u/k + 1)u > u
6. ... since a path of length ` has ` + 1 vertices. A

contradiction.

9/51

No augmenting path, no cry
Or: Having a maximum matching.

Corollary
A matching M is maximum ⇐⇒ there is no augmenting
path for M .

10/51

The algorithm

1. G = (L ∪ R,E): bipartite graph.

2. Task: Compute maximum size matching in G.

3. M0 = ∅ empty matching.

4. In i th iteration of algSlowMatch:

4.1 Li ⊆ L and Ri ⊆ R: set of free vertices for matching
Mi−1.

4.2 Graph Hi : Orient all edges of E \Mi−1 from left to the
right.

4.3 ∀lr ∈ Mi−1 oriented from the right to left, as the new
directed edge (r , l).

4.4 BFS: compute shortest path πi from a vertex of Li to a
vertex of Ri .

4.5 If no such path =⇒ no augmenting path =⇒ stop.
4.6 Mi = Mi−1 ⊕ πi .

11/51

Analysis.

1. augmenting path has an odd number of edges.

2. starts free vertex on left side: ends in free vertex on right
side.

3. augmenting path: path between vertex Li to vertex of Ri
in Hi .

4. By corollary: algorithm matching not maximum matching
yet...,

5. =⇒ ∃ augmenting path.

6. Using augmenting path: increases size of matching by
one.

7. any shortest path found in Hi between Li and Ri is an
augmenting path.

8. ∃ augmenting path for Mi−1 =⇒ path from vertex of
Li to vertex of Ri in Hi .

9. algorithm computes shortest such path.
12/51

Result

1. After at most n iterations...

2. algorithm would be done.

3. Iteration of algorithm can be implemented in linear time
O(m).

4. We have:

Lemma
Given a bipartite undirected graph G = (L ∪ R,E), with n
vertices and m edges, one can compute the maximum
matching in G in O(nm) time.

13/51

Observations:

1. If we augmenting along a shortest path, then the next
augmenting path must be longer (or at least not shorter).

2. If always augment along shortest paths, then the
augmenting paths get longer as the algorithm progress.

3. All the augmenting paths of the same length used by the
algorithm are vertex-disjoint (!).

4. Main idea of the faster algorithm: compute this block of
vertex-disjoint paths of the same length in one go, thus
getting the improved running time.

14/51

Shortest augmenting paths get longer...

Lemma
Let M be a matching, and π be the shortest augmenting path
for M , and let π′ be any augmenting path for M ′ = M ⊕ π.
Then |π′| ≥ |π|. Specifically, we have
|π′| ≥ |π|+ 2 |π ∩ π′|.

15/51

Proof

1. Consider the matching N = M ⊕ π ⊕ π′.
2. |N| = |M|+ 2.

3. M ⊕ N contains two augmenting paths, say σ1 and σ2

(relative to M).

4. M ⊕ N = π ⊕ π′, and
|π ⊕ π′| = |M ⊕ N| ≥ |σ1|+ |σ2| .

5. π: shortest augmenting path (M) =⇒ |σ1| ≥ |π| and
|σ2| ≥ |π|.

6. =⇒ |π ⊕ π′| ≥ |σ1|+ |σ2| ≥ |π|+ |π| = 2 |π| .
7. By definition: |π ⊕ π′| = |π|+ |π′| − 2 |π ∩ π′| .
8. Combining with the above, we have
|π|+ |π′| − 2 |π ∩ π′| ≥ 2 |π|

=⇒ |π′| ≥ |π|+ 2 |π ∩ π′| .

16/51

Corollary

Corollary
.For sequence of augmenting paths used algorithm (always
augment the matching along the shortest augmenting path).
We have: |π1| ≤ |π2| ≤ . . . ≤ |πt|.
t: number of augmenting paths computed by the algorithm.
π1, π2, . . . , πt : sequence augmenting paths used by
algorithm.

17/51

Augmenting paths of same length are disjoint

Lemma
For all i and j , such that |πi | = · · · = |πj |, we have that the
paths πi and πj are vertex disjoint.

18/51

Proof

1. Assume for contradiction: |πi | = |πj |, i < j ,
πi and πj are not vertex disjoint
j − i is minimal.

2. ∀k , i < k < j : πk is disjoint from πi and πj .

3. Mi : matching after πi was applied.

4. πj not using any of the edges of πi+1, . . . , πj−1.

5. πj is an augmenting path for Mi .

6. πj and πi share vertices.

6.1 can not be the two endpoints of πj (since they are free)
6.2 must be some interval vertex of πj .
6.3 =⇒ πi and πj must share an edge.

7. |πi ∩ πj | ≥ 1.

8. By lemma: |πj | ≥ |πi |+ 2|πi ∩ πj | > |πi |.
9. A contradiction.

19/51

Better algorithm

1. extract all possible augmenting shortest paths of a certain
length in one iteration.

2. Assume: given a matching can exact all augmenting
paths of length k for M in G in O(m) time, for
k = 1, 3, 5,

3. Apply this extraction algorithm, till k = 1 + 2
⌈√

n
⌉

.

4. Take O(km) = O(
√

nm) time.

5. T : maximum matching.

6. By the end of this process, matching is of size
|T | − Ω(

√
n). (See below why.)

7. Resume regular algorithm that augments one augmenting
path at a time.

8. After O(
√

n) regular iterations we would be done.

20/51

Analysis...

Lemma
Consider the iterative algorithm that applies shortest path
augmenting path to the current matching, and let M be the
first matching such that the shortest path augmenting path for
it is of length ≥

√
n, where n is the number of vertices in the

input graph G. Let T be the maximum matching. Then
|T | ≤ |M|+ O(

√
n).

21/51

Proof...

Proof.

1. Shortest augmenting path for the current matching M is
of length at ≥

√
n.

2. T : the maximum matching.

3. We proved: ∃ augmenting path of length
≤ 2n/(|T | − |M|) + 1.

4. Together:

√
n ≤

2n
|T | − |M|

+ 1,

5. =⇒ |T | − |M| ≤ 3
√

n, for n ≥ 4.

22/51

Algorithm via animation
Find many disjoint augmenting paths

23/51

Algorithm via animation
Layering the graph - via BFS

24/51

Algorithm via animation
The layered graph

25/51

Algorithm via animation
The reverse layered graph and extracting paths

26/51

Algorithm via animation
Recall: Now we use these augmenting paths to improve the matching

27/51

Algorithm to extract many augmenting path

1. Idea: build data-structure that is similar to BFS tree.
2. Input: G, a matching M , and a parameter k , where k

odd integer.
3. Assumption: Length shortest augmenting path for M is

k .
4. Task: Extract as many augmenting paths as possible.

Vertex disjoint. Of length k
5. F : set of free vertices in G.
6. Build directed graph:

6.1 s: source vertex connected to all vertices of L1 = L ∩ F
.

6.2 direct edges of G from left to right, and matching edges
from right to left.

6.3 H: resulting graph.

7. Compute BFS on the graph H starting at s, and let T be
the resulting tree.

8. L1,R1, L2,R2, L3, . . . be the layers of the BFS. 28/51

Algorithm to extract many augmenting path

1. By assumption: first free vertex below L1 encountered is
at level Rτ , where τ = dk/2e.

2. Scan edges of H.

3. Add forward edges to tree.

4. ... edge between two vertices that belong to two
consecutive levels of the BFS tree T.

5. J be the resulting graph.

6. J is a DAG (which is an enrichment of the original tree
T).

7. Compute also the reverse graph Jrev (where, we just
reverse the edges).

29/51

Back to extracting paths...

1. Fτ = Rτ ∩ F : free vertices of distance k from free
vertices of L1.

2. ∀v ∈ Fτ do a DFS in Jrev till the DFS reaches a vertex
of L1.

3. Mark all the vertices visited by the DFS as “used” – thus
not allowing any future DFS to use these vertices (i.e.,
the DFS ignore edges leading to used vertices).

4. If the DFS succeeds, extract shortest path found, and
add it to the collection of augmenting paths.

5. Otherwise, move on to the next vertex in Fτ , till visit all
such vertices.

6. Results: collection of augmenting paths Pτ ,

6.1 vertex disjoint.
6.2 All of length k .

30/51

Analysis...

1. Building initial graphs J and Jrev takes O(m) time.

2. Charge running time of the second stage to the edges and
vertices visited.

3. Any vertex visited by any DFS is never going to be
visited again...

4. =⇒ edge of Jrev is going to be considered only once by
algorithm.

5. =⇒ running time of the algorithm is O(n + m).

31/51

Maximal set of disjoint augmenting paths

Lemma
The set Pk is a maximal set of vertex-disjoint augmenting
paths of length k for M .

32/51

Proof...

Proof.

1. M ′ be the result of augmenting M with the paths of Pk .

2. Assume for sake of contradiction: Pk is not maximal.

3. That is: ∃ augmenting path σ of length k disjoint from
paths of Pk .

4. Algorithm could traverse σ in J,

5. ... would go through unused vertices.

6. Indeed, if any vertices of σ were used by any of the back
DFS,

7. =⇒ resulted in a path that goes to a free vertex in L1.

8. =⇒ a contradiction: σ is supposedly disjoint from the
paths of Pk .

33/51

The result

Theorem
Given a bipartite unweighted graph G with n vertices and m
edges, one can compute maximum matching in G in
O(
√

nm) time.

34/51

The proof...

The algMatchingHK algorithm was described, and the
running time analysis was also done.
The main challenge is the correctness.

35/51

Proof of correctness...

1. interpret execution of algorithm as simulating the slower
and simpler algorithm.

2. algMatchingHK : computes sequence of sets of
augmenting paths P1,P3,P5,

3. order augmenting paths in an arbitrary order inside each
such set.

4. Results: in sequence of augmenting paths that are
shortest augmenting paths for the current matching.

5. By lemma: each Pk maximal set of vertex-disjoint
augmenting paths of length k .

6. Other lemma: all aug. paths of len k computed: vertex
disjoint.

7. Now by induction: argue that if algMatchingHK
simulates correctly algSlowMatch, for the augmenting
paths in P1 ∪ P3 ∪ . . .Pi , then it simulates it correctly
for P1 ∪ P3 ∪ . . .Pi ∪ Pi+1. Done.

36/51

Bibliographical notes

The description here follows the original and reasonably well
written paper of Hopcroft and Karp Hopcroft and Karp [1973].
Both won the Turing award.

37/51

J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput.,
2:225–231, 1973.

37/51

	Matchings I
	Matchings
	Definitions

	Definitions and basic properties
	Definitions
	Matchings and alternating paths
	No augmenting path, no cry

	Unweighted matching in bipartite graph
	The slow algorithm
	The Hopcroft-Karp algorithm
	Algorithm via animation
	Algorithm via animation
	Algorithm via animation
	Algorithm via animation
	Algorithm via animation

