NEW CS 473: Theory II, Fall 2015

Matchings I

Lecture 16 October 20, 2015

The problem

Problem

Given a graph **G** and a weight function on the edges, compute the maximum weight matching in **G**.

Matching, perfect, maximal

Definition

For a graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a set $M \subseteq \mathbf{E}$ is a matching if no pair of edges of M has a common vertex.

Definition

A matching is **perfect** if it covers all the vertices of G. For a weight function w, which assigns real weight to the edges of G, a matching M is a **maximal weight matching**, if M is a matching and $w(M) = \sum_{e \in M} w(e)$ is maximal.

Definition

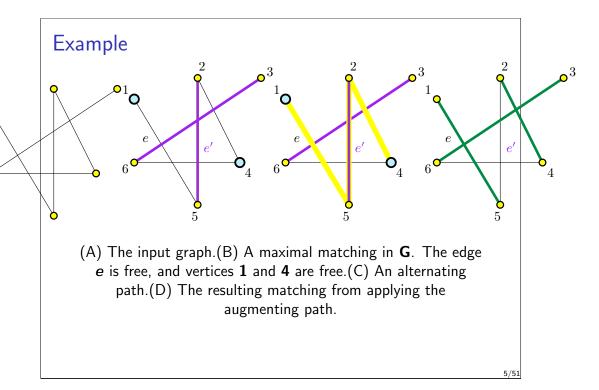
If there is no weight on the edges, we consider the weight of every edge to be one, and in this case, we are trying to compute a **maximum size matching**.

2/51

4/51

Some definitions

- 1. M: matching.
- 2. $e \in M$ is a matching edgematching!matching edge.
- 3. $e' \in E(G) \setminus M$ is free.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is free.
- 6. **alternating path**: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. length of a path/cycle is the number of edges in it.



Augmenting paths improve things

Lemma

M: matching. π : augmenting path relative to *M*. Then

 $M' = M \oplus \pi = \{e \in \mathsf{E} \mid e \in (M \setminus \pi) \cup (\pi \setminus M)\}$

is a matching of size |M| + 1.

Proof.

- 1. Remove π from graph.
- 2. Leftover matching: $|M| |M \cap \pi|$.
- 3. Add back π . Add free edges of π to matching.
- 4. M': New set of edges... a matching.

5.
$$|M'| = |M| - |M \cap \pi| + |\pi \setminus M| = |M| + 1.$$

7/51

Augmenting paths

Definition

Path $\pi = v_1 v_2, \ldots, v_{2k+2}$ is **augmenting** path for matching M (for graph **G**): (i) π is simple, (ii) for all $i, e_i = v_i v_{i+1} \in \mathbf{E}(\mathbf{G})$, (iii) v_1 and v_{2k+2} are free vertices for M, (iv) $e_1, e_3, \ldots, e_{2k+1} \notin M$, and (v) $e_2, e_4, \ldots, e_{2k} \in M$. After applying both augmenting path, we end up with maximum matching here.

Many augmenting paths

Lemma

M: matching. *T*: maximum matching. k = |T| - |M|. Then *M* has *k* vertex disjoint augmenting paths.

Proof.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $\forall v \in V(H): d(v) \leq 2$.
- 3. *H*: collection of alternating paths and cycles.
- 4. cycles are even length.
- 5. k more edges of T in $M \oplus T$ than of M.
- 6. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 7. For a path $\pi \in H$: $|\pi \cap M| \le |\pi \cap T| \le |\pi \cap M| + 1$.
- 8. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 9. \implies Must be k augmenting paths in H.

Many augmenting paths

Lemma

M: matching. *T*: maximum matching. k = |T| - |M|. At least one augmenting path for *M* of length $\leq u/k - 1$, where u = 2(|T| + |M|).

Proof.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|).$
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k+1)u > u$
- 6. ... since a path of length ℓ has $\ell + 1$ vertices. A contradiction.

9/51

The algorithm

- 1. $\mathbf{G} = (\mathbf{L} \cup \mathbf{R}, \mathbf{E})$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph H_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge (r, l).
 - 4.4 **BFS**: compute *shortest path* π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop.

4.6
$$M_i = M_{i-1} \oplus \pi_i$$

No augmenting path, no cry

Or: Having a maximum matching.

Corollary

A matching M is maximum \iff there is no augmenting path for M.

Analysis.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.

10/51

12/51

- augmenting path: path between vertex L_i to vertex of R_i in H_i.
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. \implies \exists augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in H_i between L_i and R_i is an augmenting path.
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in H_i .
- 9. algorithm computes shortest such path.

Result

- 1. After at most *n* iterations...
- 2. algorithm would be done.
- 3. Iteration of algorithm can be implemented in linear time O(m).
- 4. We have:

Lemma

Given a bipartite undirected graph $\mathbf{G} = (\mathbf{L} \cup \mathbf{R}, \mathbf{E})$, with \mathbf{n} vertices and \mathbf{m} edges, one can compute the maximum matching in \mathbf{G} in $O(\mathbf{nm})$ time.

13/51

Shortest augmenting paths get longer...

Lemma

Let **M** be a matching, and π be the shortest augmenting path for **M**, and let π' be any augmenting path for $\mathbf{M}' = \mathbf{M} \oplus \pi$. Then $|\pi'| \ge |\pi|$. Specifically, we have $|\pi'| \ge |\pi| + 2 |\pi \cap \pi'|$.

Observations:

- 1. If we augmenting along a shortest path, then the next augmenting path must be longer (or at least not shorter).
- 2. If always augment along shortest paths, then the augmenting paths get longer as the algorithm progress.
- 3. All the augmenting paths of the same length used by the algorithm are vertex-disjoint (!).
- 4. Main idea of the faster algorithm: compute this block of vertex-disjoint paths of the same length in one go, thus getting the improved running time.

Proof

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|.$
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2 |\pi \cap \pi'|$.
- 8. Combining with the above, we have $\begin{aligned} |\pi| + |\pi'| - 2 |\pi \cap \pi'| \ge 2 |\pi| \\ \implies |\pi'| > |\pi| + 2 |\pi \cap \pi'|. \end{aligned}$

Corollary

Corollary

.For sequence of augmenting paths used algorithm (always augment the matching along the shortest augmenting path). We have: $|\pi_1| \leq |\pi_2| \leq \ldots \leq |\pi_t|$.

t: number of augmenting paths computed by the algorithm. $\pi_1, \pi_2, \ldots, \pi_t$: sequence augmenting paths used by algorithm.

Proof

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint
 - j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .

6. π_j and π_i share vertices.

- 6.1 can not be the two endpoints of π_j (since they are free)
- 6.2 must be some interval vertex of π_j .
- 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \ge 1$.

8. By lemma:
$$|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$$

9. A contradiction.

Augmenting paths of same length are disjoint

Lemma

For all *i* and *j*, such that $|\pi_i| = \cdots = |\pi_j|$, we have that the paths π_i and π_j are vertex disjoint.

Better algorithm

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in **G** in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2 \left[\sqrt{n}\right]$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. T: maximum matching.
- 6. By the end of this process, matching is of size $|\mathcal{T}| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

19/51

17/51

Analysis...

Lemma

Consider the iterative algorithm that applies shortest path augmenting path to the current matching, and let M be the first matching such that the shortest path augmenting path for it is of length $\geq \sqrt{n}$, where n is the number of vertices in the input graph G. Let T be the maximum matching. Then $|T| \leq |M| + O(\sqrt{n})$.

Proof...

Proof.

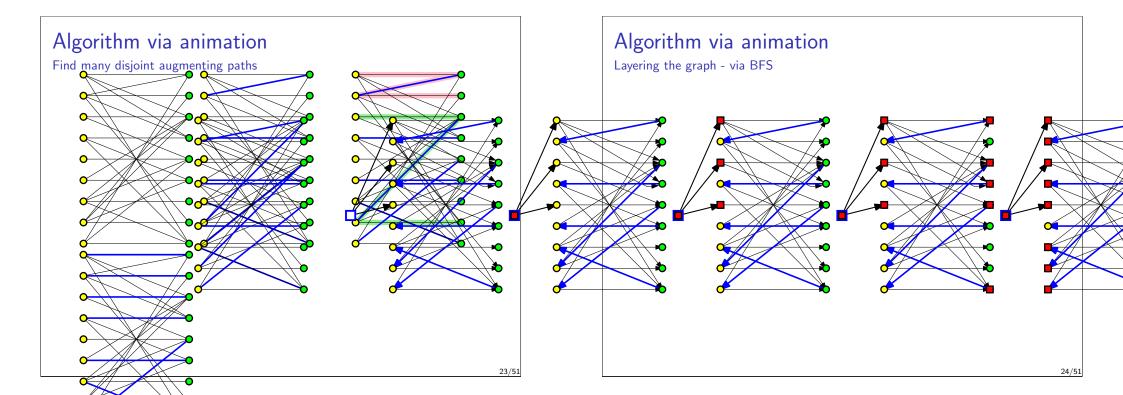
- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. T: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|\mathcal{T}| |\mathcal{M}|) + 1$.

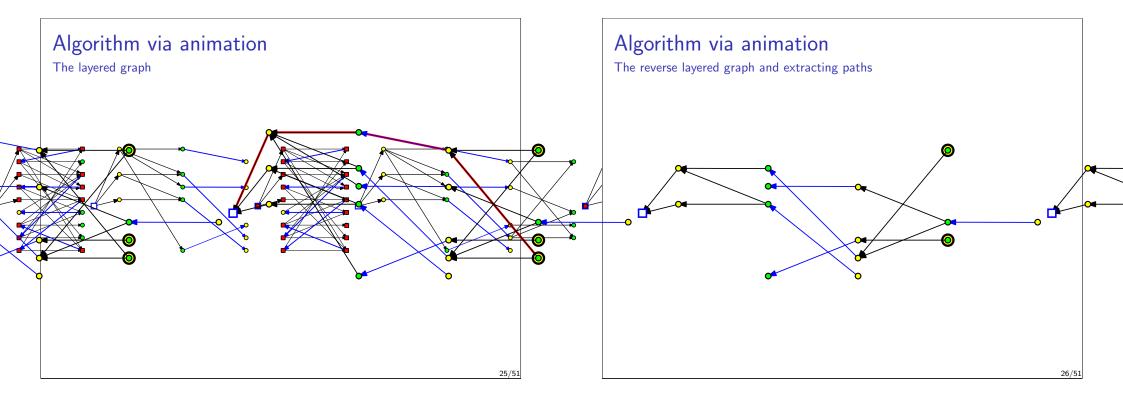
4. Together:

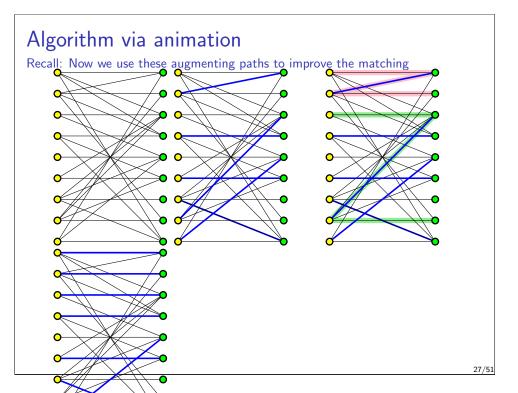
$$\sqrt{n} \leq \frac{2n}{|\mathcal{T}| - |\mathcal{M}|} + 1$$

22/51

5.
$$\implies |T| - |M| \le 3\sqrt{n}$$
, for $n \ge 4$.







Algorithm to extract many augmenting path

- 1. Idea: build data-structure that is similar to **BFS** tree.
- 2. Input: **G**, a matching *M*, and a parameter *k*, where *k* odd integer.
- 3. Assumption: Length shortest augmenting path for *M* is *k*.
- Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in **G**.
- 6. Build directed graph:
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$
 - $6.2\,$ direct edges of ${\bf G}$ from left to right, and matching edges from right to left.
 - 6.3 H: resulting graph.
- 7. Compute **BFS** on the graph **H** starting at s, and let \mathfrak{T} be the resulting tree.

28/51

8. $L_1, R_1, L_2, R_2, L_3, \ldots$ be the layers of the **BFS**.

Algorithm to extract many augmenting path

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of **H**.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the BFS tree \mathcal{T} .
- 5. J be the resulting graph.
- 6. J is a DAG (which is an enrichment of the original tree \mathcal{T}).
- 7. Compute also the reverse graph J^{rev} (where, we just reverse the edges).

29/51

Analysis...

- 1. Building initial graphs **J** and **J**^{rev} takes O(m) time.
- 2. Charge running time of the second stage to the edges and vertices visited.
- 3. Any vertex visited by any **DFS** is never going to be visited again...
- 4. \implies edge of \mathbf{J}^{rev} is going to be considered only once by algorithm.
- 5. \implies running time of the algorithm is O(n + m).

Back to extracting paths...

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in **J**^{rev} till the **DFS** reaches a vertex of L_1 .
- Mark all the vertices visited by the DFS as "used" thus not allowing any future DFS to use these vertices (i.e., the DFS ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint.
 - 6.2 All of length k.

30/51

Maximal set of disjoint augmenting paths

Lemma

The set P_k is a maximal set of vertex-disjoint augmenting paths of length k for M.

Proof...

Proof.

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in **J**,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back ${\sf DFS},$
- 7. \implies resulted in a path that goes to a free vertex in L_1 .
- 8. \implies a contradiction: σ is supposedly disjoint from the paths of P_k .

33/51

The proof...

The **algMatching**_{*HK*} algorithm was described, and the running time analysis was also done. The main challenge is the correctness.

The result

Theorem

Given a bipartite unweighted graph **G** with **n** vertices and **m** edges, one can compute maximum matching in **G** in $O(\sqrt{nm})$ time.

Proof of correctness...

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- algMatching_{HK}: computes sequence of sets of augmenting paths P₁, P₃, P₅,
- 3. order augmenting paths in an arbitrary order inside each such set.
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len \boldsymbol{k} computed: vertex disjoint.
- 7. Now by induction: argue that if $algMatching_{HK}$ simulates correctly algSlowMatch, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

Bibliographical notes

The description here follows the original and reasonably well written paper of Hopcroft and Karp Hopcroft and Karp [1973]. Both won the Turing award.

J. E. Hopcroft and R. M. Karp. An *n*^{5/2} algorithm for maximum matchings in bipartite graphs. *SIAM J. Comput.*, 2:225–231, 1973.

37/51

