Chapter 14

Randomized Algorithms III – Min Cut

NEW CS 473: Theory II, Fall 2015
October 13, 2015

14.1 Min Cut

14.1.1 Problem Definition

14.2 Min cut

14.2.0.1 Min cut

\[G = (V, E): \text{undirected graph, } n \text{ vertices, } m \text{ edges.} \]

Interested in cuts in G.

Definition 14.2.1. cut in G: a partition of V: \(S \) and \(V \setminus S \).

Edges of the cut:

\[(S, V \setminus S) = \left\{ uv \mid u \in S, v \in V \setminus S, \text{ and } uv \in E \right\}, \]

\(|(S, V \setminus S)| \text{ is size of the cut}\)

minimum cut / mincut: cut in graph with min size.

14.2.0.2 Some definitions

(A) conditional probability of \(X \) given \(Y \) is

\[\Pr[X = x \mid Y = y] = \frac{\Pr[(X=x) \cap (Y=y)]}{\Pr[Y=y]}. \]

\[\Pr[X = x \cap Y = y] = \Pr[X = x \mid Y = y] \cdot \Pr[Y = y]. \]
(B) X, Y events are **independent**, if $\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y]$.

$$\implies \Pr[X = x \mid Y = y] = \Pr[X = x].$$

14.2.0.3 Some more probability

Lemma 14.2.2. $\mathcal{E}_1, \ldots, \mathcal{E}_n$: n events (not necessarily independent). Then,

$$\Pr[\cap_{i=1}^n \mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \Pr[\mathcal{E}_3 \mid \mathcal{E}_1 \cap \mathcal{E}_2] \cdot \ldots \cdot \Pr[\mathcal{E}_n \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-1}].$$

14.3 The Algorithm

14.3.0.1 Edge contraction...

![Diagram of graph G and G/xy](image)

G: (A) **edge contraction**: $e = xy$ in G.
(B) ... merge x, y into a single vertex.
(C) ... remove self loops.
(D) ... parallel edges – **multi-graph**.
(E) ... weights/ multiplicities on the edges.

14.3.0.2 Min cut in weighted graph

![Diagram of edge contraction](image)

Edge contraction implemented in $O(n)$ time:
(A) Graph represented using adjacency lists.
(B) Merging the adjacency lists of the two vertices being contracted.
(C) Fix adjacency list of vertices connected to x, y.
 [Use radix sort.]
(D) Include edge weight in computing cut weight.

14.3.0.3 Cuts under contractions

Observation 14.3.1. (A) A cut in G/xy is a valid cut in G.
(B) There \exists cuts in G are not in G/xy.
(C) The cut $S = \{x\}$ is not in G/xy.
(D) \implies size mincut in $G/xy \geq$ mincut in G.

(A) **Idea:** Repeatedly perform edge contractions (benefits: shrink graph)...
(B) Every vertex in contracted graph is a connected component in the original graph.)
14.3.0.4 Contraction

14.3.0.5 Contraction - all together now

14.3.0.6 Another interpretation

14.3.0.7 But...

(A) Not min cut!
(B) Contracted wrong edge somewhere...
(C) If never contract an edge in the cut...
14.3.1 The resulting algorithm

14.3.1.1 The algorithm...

Algorithm MinCut(G)

\[G_0 \leftarrow G \]
\[i = 0 \]

while \(G_i \) has more than two vertices do

\[e_i \leftarrow \text{random edge from } E(G_i) \]
\[G_{i+1} \leftarrow G_i/e_i \]
\[i \leftarrow i + 1 \]

Let \((S, V \setminus S)\) be the cut in the original graph

corresponding to the single edge in \(G_i \)

return \((S, V \setminus S)\).

14.3.1.2 How to pick a random edge?

Lemma 14.3.2. \(X = \{x_1, \ldots, x_n\} \): elements, \(\omega(x_i) \): integer positive weight.

Pick randomly, in \(O(n) \) time, an element \(x \in X \), with prob picking \(x_i \) being \(\omega(x_i)/W \), where \(W = \sum_{i=1}^{n} \omega(x_i) \).

Proof: Randomly choose \(r \in [0, W] \).

Precompute \(\beta_i = \sum_{k=1}^{i} \omega(x_k) = \beta_{i-1} + \omega(x_i) \).

Find first index \(i, \beta_{i-1} < r \leq \beta_i \). Return \(x_i \).

(A) Edges have weight...
(B) ...compute total weight of each vertex (adjacent edges).
(C) Pick randomly a vertex by weight.
(D) Pick random edge adjacent to this vertex.

14.3.2 Analysis

14.3.2.1 The probability of success

14.3.2.2 Lemma...

Lemma 14.3.3. \(G \): mincut of size \(k \) and \(n \) vertices, then \(|E(G)| \geq \frac{kn}{2} \).

Proof: Each vertex degree is at least \(k \), otherwise the vertex itself would form a minimum cut of size smaller than \(k \). As such, there are at least \(\sum_{v \in V} \text{degree}(v)/2 \geq nk/2 \) edges in the graph.

14.3.2.3 Lemma...

Lemma 14.3.4. If we pick in random an edge \(e \) from a graph \(G \), then with probability at most \(\frac{2}{n} \) it belong to the minimum cut.

Proof: There are at least \(nk/2 \) edges in the graph and exactly \(k \) edges in the minimum cut. Thus, the probability of picking an edge from the minimum cut is smaller then \(k/(nk/2) = 2/n \).
14.3.2.4 Lemma

Lemma 14.3.5. MinCut outputs the mincut with prob. \(\geq \frac{2}{n(n-1)} \).

Proof

(A) \(\mathcal{E}_i \): event that \(e_i \) is not in the minimum cut of \(G_i \).

(B) MinCut outputs mincut if all the events \(\mathcal{E}_0, \ldots, \mathcal{E}_{n-3} \) happen.

(C) \(\Pr[\mathcal{E}_i \mid \mathcal{E}_0 \cap \mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{i-1}] \geq 1 - \frac{2}{|V(G_i)|} = 1 - \frac{2}{n-i} \).

\[\implies \Delta = \Pr[\mathcal{E}_0 \cap \cdots \cap \mathcal{E}_{n-3}] = \Pr[\mathcal{E}_0] \cdot \Pr[\mathcal{E}_1 \mid \mathcal{E}_0] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_0 \cap \mathcal{E}_1] \cdots \Pr[\mathcal{E}_{n-3} \mid \mathcal{E}_0 \cap \cdots \cap \mathcal{E}_{n-4}] \]

14.3.2.5 Proof continued...

As such, we have

\[\Delta \geq \prod_{i=0}^{n-3} \left(1 - \frac{2}{n-i}\right) = \prod_{i=0}^{n-3} \frac{n-i-2}{n-i} \]

\[= \frac{n-2}{n} \ast \frac{n-3}{n-1} \ast \frac{n-4}{n-2} \cdots \frac{2}{4} \ast \frac{1}{3} \]

\[= \frac{2}{n \cdot (n-1)}. \]

14.3.2.6 Some math restated...

\[\alpha = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \]

\[= \frac{n-2}{n} \ast \frac{n-3}{n-1} \ast \frac{n-4}{n-2} \cdots \frac{3}{4} \ast \frac{2}{3} \]

\[= \frac{n-2}{n} \ast \frac{n-3}{n-1} \ast \frac{n-4}{n-2} \cdots \frac{3}{4} \ast \frac{2}{3} \]

\[= \frac{2}{n(n-1)} \]

14.3.2.7 Running time analysis.

14.3.2.8 Running time analysis...

Observation 14.3.6. MinCut runs in \(O(n^2) \) time.

Observation 14.3.7. The algorithm always outputs a cut, and the cut is not smaller than the minimum cut.

Definition 14.3.8. Amplification: running an experiment again and again till the things we want to happen, with good probability, do happen.
14.3.2.9 Getting a good probability

MinCutRep: algorithm runs MinCut \(n(n-1) \) times and return the minimum cut computed.

Lemma 14.3.9. Probability MinCutRep fails to return the minimum cut is < 0.14.

Proof: MinCut fails to output the mincut in each execution is at most \(1 - \frac{2}{n(n-1)} \).

MinCutRep fails, only if all \(n(n-1) \) executions of MinCut fail.

\[
\left(1 - \frac{2}{n(n-1)}\right)^{n(n-1)} \leq \exp\left(-\frac{2}{n(n-1)} \cdot n(n-1)\right) = \exp(-2) < 0.14, \text{ since } 1 - x \leq e^{-x} \text{ for } 0 \leq x \leq 1.
\]

14.3.2.10 Result

Theorem 14.3.10. One can compute mincut in \(O(n^4) \) time with constant probability to get a correct result. In \(O(n^4 \log n) \) time the minimum cut is returned with high probability.

14.4 A faster algorithm

14.4.0.1 Faster algorithm

Why MinCutRep needs so many executions?

Probability of failure in first \(\nu \) iterations is

\[
\Pr\left[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{\nu-1} \right] \geq \prod_{i=0}^{\nu-1} \left(1 - \frac{2}{n-i}\right) = \prod_{i=0}^{\nu-1} \frac{n-i-2}{n-i}
= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \ldots
= \frac{(n-\nu)(n-\nu-1)}{n \cdot (n-1)}.
\]

\[\Rightarrow \nu = n/2: \text{ Prob of success } \approx 1/4.\]

\[\Rightarrow \nu = n - \sqrt{n}: \text{ Prob of success } \approx 1/n.\]

14.4.0.2 Faster algorithm...

Insight

(A) As the graph get smaller probability for bad choice increases.

(B) Currently do the amplification from the outside of the algorithm.

(C) Put amplification directly into the algorithm.
14.4.1 Contract...

14.4.1.1 Contract\((G, t)\) shrinks \(G\) till it has only \(t\) vertices. FastCut computes the minimum cut using Contract.

```
Contract(G, t)
while |\(G\)| > t do
  Pick random edge \(e\) in \(G\).
  \(G \leftarrow G/e\)
return \(G\)
```

FastCut\((G = (V, E))\)
// \(G\) -- multi-graph
\(n \leftarrow |V(G)|\)
if \(n \leq 6\) then
 return mincut \(G\) (brute force)
\(t \leftarrow \lceil 1 + n/\sqrt{2} \rceil\)
\(H_1 \leftarrow Contract(G, t)\)
\(H_2 \leftarrow Contract(G, t)\)
/* Contract is randomized */
\(X_1 \leftarrow FastCut(H_1)\),
\(X_2 \leftarrow FastCut(H_2)\)
return mincut of \(X_1\) and \(X_2\).

14.4.2 Lemma...

Lemma 14.4.1. The running time of FastCut\((G)\) is \(O(n^2 \log n)\), where \(n = |V(G)|\).

Proof: Well, we perform two calls to Contract\((G, t)\) which takes \(O(n^2)\) time. And then we perform two recursive calls on the resulting graphs. We have:

\[
T(n) = O(n^2) + 2T\left(\frac{n}{\sqrt{2}}\right)
\]

The solution to this recurrence is \(O(n^2 \log n)\) as one can easily (and should) verify. \(\blacksquare\)

14.4.3 Success at each step

Lemma 14.4.2. Probability that mincut in contracted graph is original mincut is at least \(1/2\).

Proof: Plug in \(\nu = n - t = n - \lceil 1 + n/\sqrt{2} \rceil\) into success probability:

\[
\Pr\left[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{n-t}\right] \geq \frac{t(t-1)}{n \cdot (n-1)}
\]

\[
= \frac{\lceil 1 + n/\sqrt{2} \rceil (\lceil 1 + n/\sqrt{2} \rceil - 1)}{n(n-1)} \geq \frac{1}{2}
\]

14.4.4 Probability of success...

Lemma 14.4.3. FastCut finds the minimum cut with probability larger than \(\Omega(1/\log n)\).

See class notes for a formal proof. We provide a more elegant direct argument shortly.

14.4.5 Amplification

Lemma 14.4.4. Running FastCut repeatedly \(c \cdot \log^2 n\) times, guarantee that the algorithm outputs mincut with probability \(\geq 1 - 1/n^2\).

\(c\) is a constant large enough.

Proof: \((A)\) FastCut succeeds with prob \(\geq c'/\log n\), \(c'\) is a constant.
(B) ...fails with prob. \(\leq 1 - c'/\log n \).
(C) ...fails in \(m \) reps with prob. \(\leq (1 - c'/\log n)^m \). But then
\[
(1 - c'/\log n)^m \leq (e^{-c'/\log n})^m \leq e^{-mc'/\log n} \leq \frac{1}{n^2},
\]
for \(m = (2 \log^2 n)/c' \).

14.4.1.6 Theorem

Theorem 14.4.5. *One can compute the minimum cut in a graph \(G \) with \(n \) vertices in \(O(n^2 \log^3 n) \) time. The algorithm succeeds with probability \(\geq 1 - 1/n^2 \).*

Proof: We do amplification on \textbf{FastCut} by running it \(O(\log^2 n) \) times. The running time bound follows from lemma... \(\blacksquare \)