# Chapter 12

# Randomized Algorithms II – High Probability

**NEW CS 473: Theory II, Fall 2015** October 6, 2015

## 12.1 Understanding the binomial distribution

### 12.1.0.1 Binomial distribution

 $X_n$  = numbers of heads when flipping a coin n times.

### Claim

 $\mathbf{Pr}\left[X_n = i\right] = \frac{\binom{n}{i}}{2^n}.$ Where:  $\binom{n}{k} = \frac{n!}{(n-k)!k!}.$ 

Indeed,  $\binom{n}{i}$  is the number of ways to choose *i* elements out of *n* elements (i.e., pick which *i* coin flip come up heads).

Each specific such possibility (say 0100010...) had probability  $1/2^n$ .

### 12.1.0.2 Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.







### 12.1.0.3 Massive randomness.. Is not that random.



This is known as *concentration of mass*.

This is a very special case of the *law of large numbers*.

### 12.1.1 Side note...

### 12.1.1.1 Law of large numbers (weakest form)...

### Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.



### 12.1.1.2 Massive randomness.. Is not that random.

### Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

### 12.1.1.3 What is really hiding below the Normal distribution?



Taken from Matoušek and Nešetřil [1998].

## 12.2 QuickSort and Treaps with High Probability 12.2.0.1 Proof of high probability of QuickSort

- (A) T: n items to be sorted.
- (B)  $t \in T$ : element.
- (C)  $X_i$ : the size of subproblem  $S_i$  in *i*th level of recursion containing t.
- (D)  $X_0 = n$ , and

$$\mathbf{E}\left[X_{i} \mid X_{i-1}\right] \leq \mathbf{Pr}[\operatorname{lucky}] \frac{3}{4} X_{i-1} + \mathbf{Pr}[\operatorname{unlucky}] X_{i-1}$$

(E) Lucky = pivot used in  $S_i$  is in rank  $\left[\frac{1}{4}|S_i|, \frac{3}{4}|S_i|\right]$ 

- (F)  $\Pr[\text{lucky}] = 1/2.$
- (G)  $\mathbf{Pr}[\text{lucky}] = 1/2$ . As such...

$$\mathbf{E}\left[X_{i} \mid X_{i-1}\right] \leq \frac{1}{2} \frac{3}{4} X_{i-1} + \frac{1}{2} X_{i-1} = \frac{7}{8} X_{i-1}.$$

### 12.2.0.2 Proof of high probability of QuickSort

- (A) T: n items to be sorted.
- (B)  $t \in T$ : element.
- (C)  $X_i$ : the size of subproblem in *i*th level of recursion containing *t*.

(D) 
$$X_0 = n$$
, and  $\mathbf{E} \left[ X_i \mid X_{i-1} \right] \le \frac{1}{2} \frac{3}{4} X_{i-1} + \frac{1}{2} X_{i-1} \le \frac{7}{8} X_{i-1}$ 

(E) 
$$\forall$$
 random variables  $\mathbf{E}[X] = \mathbf{E}_y [\mathbf{E}[X | Y = y]].$ 

(F) 
$$\mathbf{E}\left[X_i\right] = \mathbf{E}_y \left[\mathbf{E}\left[X_i \mid X_{i-1} = y\right]\right] \le \mathbf{E}_{X_{i-1} = y} \left[\frac{7}{8}y\right] = \frac{7}{8} \mathbf{E}\left[X_{i-1}\right] \le \left(\frac{7}{8}\right)^i \mathbf{E}\left[X_0\right] = \left(\frac{7}{8}\right)^i n$$

- 12.2.0.3Proof of high probability of QuickSort
- (A)  $M = 8 \log_{8/7} n$ :  $\mu = \mathbf{E} \left[ X_M \right] \le \left( \frac{7}{8} \right)^M n \le \frac{1}{n^8} n = \frac{1}{n^7}.$
- (B) Markov's Inequality: For a non-negative variable X, and t > 0, we have:  $\mathbf{Pr} \left| X \ge t \right|$  $\leq$  $\mathbf{E}[X]$
- (C) By Markov's inequality:

$$\mathbf{Pr}\left[\begin{array}{c}t \text{ participates}\\>M \text{ recursive}\\\text{ calls}\end{array}\right] \leq \mathbf{Pr}\left[X_M \geq 1\right] \leq \frac{\mathbf{E}[X_M]}{1} \leq \frac{1}{n^7}.$$

(D) Probability any element of input participates > M recursive calls  $\leq n(1/n^7) \leq 1/n^6$ .

#### 12.2.1High probability via Chernoff inequality

- Show that QuickSort running time is  $O(n \log n)$ 12.2.1.1
- (A) QuickSort picks a pivot, splits into two subproblems, and continues recursively.
- (B) Track single element in input.
- (C) Game ends, when this element is alone in subproblem.
- (D) Show every element in input, participates  $\leq 32 \ln n$  rounds (with high enough probability).
- (E)  $\mathcal{E}_i$ : event *i*th element participates >  $32 \ln n$  rounds.
- (F)  $C_{QS}$ : number of comparisons performed by QuickSort.
- (G) Running time  $O(C_{QS})$ .
- (H) Probability of failure is  $\alpha = \mathbf{Pr} \Big[ C_{QS} \ge 32n \ln n \Big] \le \mathbf{Pr} [\bigcup_i \mathcal{E}_i] \le \sum_{i=1}^n \mathbf{Pr} \Big[ \mathcal{E}_i \Big].$ ... by the union bound.

#### 12.2.1.2Show that QuickSort running time is $O(n \log n)$

- (A) Probability of failure is  $\alpha = \mathbf{Pr} \Big[ C_{QS} \ge 32n \ln n \Big] \le \mathbf{Pr} [\bigcup_i \mathcal{E}_i] \le \sum_{i=1}^n \mathbf{Pr} \Big[ \mathcal{E}_i \Big].$ (B) **Union bound**: for any two events A and B:  $\mathbf{Pr}[A \cup B] \le \mathbf{Pr}[A] + \mathbf{Pr}[B].$
- (C) Assume:  $\mathbf{Pr}[\mathcal{E}_i] \leq 1/n^3$ .
- (D) Bad probability...  $\alpha \leq \sum_{i=1}^{n} \Pr\left[\mathcal{E}_{i}\right] \leq \sum_{i=1}^{n} \frac{1}{n^{3}} = \frac{1}{n^{2}}.$
- (E)  $\implies$  QuickSort performs  $< 32n \ln n$  comparisons, w.h.p.
- (F)  $\implies$  QuickSort runs in  $O(n \log n)$  time, with high probability.

#### 12.2.2Proving that an element participates in small number of rounds

#### 12.2.3Proving that an element...

#### 12.2.3.1... participates in small number of rounds.

- (A) *n*: number of elements in input for **QuickSort**.
- (B) x: Arbitrary element x in input.
- (C)  $S_1$ : Input.

- (D)  $S_i$ : input to *i*th level recursive call that include x.
- (E) x **lucky** in *j*th iteration, if balanced split...  $|S_{j+1}| \leq (3/4) |S_j|$  and  $|S_j \setminus S_{j+1}| \leq (3/4) |S_j|$
- (F)  $Y_j = 1 \iff x$  lucky in *j*th iteration.
- (G)  $\mathbf{Pr}\left[Y_j\right] = \frac{1}{2}.$
- (H) **Observation**:  $Y_1, Y_2, \ldots, Y_m$  are independent variables.
- (I) x can participate  $\leq \rho = \log_{4/3} n \leq 3.5 \ln n$  rounds.
- (J) ...since  $|S_j| \leq n(3/4)^{\# \text{ of lucky iteration in1...j}}$ .
- (K) If  $\rho$  lucky rounds in first k rounds  $\implies |S_k| \le (3/4)^{\rho} n \le 1$ .

### 12.2.4 Proving that an element...

### 12.2.4.1 ... participates in small number of rounds.

- (A) Brain reset!
- (B) Q: How many rounds x participates in = how many coin flips till one gets  $\rho$  heads?
- (C) A: In expectation,  $2\rho$  times.

### 12.2.5 Proving that an element...

### 12.2.5.1 ... participates in small number of rounds.

(A) Assume the following:

**Lemma 12.2.1.** In *M* coin flips:  $\Pr[\# heads \le M/4] \le \exp(-M/8)$ .

- (B) Set  $M = 32 \ln n \ge 8\rho$ .
- (C)  $\mathbf{Pr}[Y_j = 0] = \mathbf{Pr}[Y_j = 1] = 1/2.$
- (D)  $Y_1, Y_2, \ldots, Y_M$  are independent.
- (E)  $\implies$  probability  $\leq \rho \leq M/4$  ones in  $Y_1, \ldots, Y_M$  is

$$\leq \exp\left(-\frac{M}{8}\right) \leq \exp(-\rho) \leq \frac{1}{n^3}.$$

(F)  $\implies$  probability x participates in M recursive calls of QuickSort  $\leq 1/n^3$ .

### 12.2.6 Proving that an element...

#### 12.2.6.1 ... participates in small number of rounds.

(A) *n* input elements. Probability depth of recursion in QuickSort >  $32 \ln n$  is  $\leq (1/n^3) * n = 1/n^2$ . (B) Result:

**Theorem 12.2.2.** With high probability (i.e.,  $1 - 1/n^2$ ) the depth of the recursion of QuickSort is  $\leq 32 \ln n$ . Thus, with high probability, the running time of QuickSort is  $O(n \log n)$ .

(C) Same result holds for MatchNutsAndBolts.

## 12.3 Chernoff inequality

### 12.3.0.1 Preliminaries

(A) X, Y: Random variables are *independent* if  $\forall x, y$ :

$$\mathbf{Pr}\Big[(X=x)\cap(Y=y)\Big] = \mathbf{Pr}\Big[X=x\Big]\cdot\mathbf{Pr}\Big[Y=y\Big]\,.$$

(B) The following is easy to prove:

Claim 12.3.1. If X and Y are independent  $\implies \mathbf{E}[XY] = \mathbf{E}[X] \mathbf{E}[Y].$  $\implies Z = e^X$  and  $W = e^Y$  are independent.

### 12.3.0.2 Chernoff inequality

**Theorem 12.3.2 (Chernoff inequality).**  $X_1, \ldots, X_n$ : *n* independent random variables, such that  $\mathbf{Pr}[X_i = 1] = \mathbf{Pr}[X_i = -1] = \frac{1}{2}$ , for  $i = 1, \ldots, n$ . Let  $Y = \sum_{i=1}^n X_i$ . Then, for any  $\Delta > 0$ , we have

$$\mathbf{Pr}\left[Y \ge \Delta\right] \le \exp\left(-\Delta^2/2n\right).$$

### 12.3.0.3 Proof of Chernoff inequality

Fix arbitrary t > 0:

$$\begin{aligned} \mathbf{Pr}\Big[Y \ge \Delta\Big] &= \mathbf{Pr}\Big[tY \ge t\Delta\Big] = \mathbf{Pr}\Big[\exp(tY) \ge \exp(t\Delta)\Big] \\ &\leq \frac{\mathbf{E}\Big[\exp(tY)\Big]}{\exp(t\Delta)}, \end{aligned}$$

## 12.3.1 Proof of Chernoff inequality

12.3.1.1 Continued...

$$\mathbf{E}\left[\exp(tX_i)\right] = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \frac{e^t + e^{-t}}{2}$$
$$= \frac{1}{2}\left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots\right)$$
$$+ \frac{1}{2}\left(1 - \frac{t}{1!} + \frac{t^2}{2!} - \frac{t^3}{3!} + \cdots\right)$$
$$= 1 + \frac{t^2}{2!} + \cdots + \frac{t^{2k}}{(2k)!} + \cdots$$

However:  $(2k)! = k!(k+1)(k+2)\cdots 2k \ge k!2^k$ .

$$\mathbf{E}\Big[\exp(tX_i)\Big] = \sum_{i=0}^{\infty} \frac{t^{2i}}{(2i)!} \le \sum_{i=0}^{\infty} \frac{t^{2i}}{2^i(i!)} = \le \sum_{i=0}^{\infty} \frac{1}{i!} \left(\frac{t^2}{2}\right)^i = \le \exp\left(\frac{t^2}{2}\right).$$

$$\mathbf{E}\left[\exp(tY)\right] = \mathbf{E}\left[\exp\left(\sum_{i} tX_{i}\right)\right] = \mathbf{E}\left[\prod_{i} \exp(tX_{i})\right] = \prod_{i=1}^{n} \mathbf{E}\left[\exp(tX_{i})\right] \le \prod_{i=1}^{n} \exp\left(\frac{t^{2}}{2}\right) = \le \exp\left(\frac{nt^{2}}{2}\right).$$
$$\mathbf{Pr}\left[Y \ge \Delta\right] \le \frac{\mathbf{E}\left[\exp(tY)\right]}{\exp(t\Delta)} \le \frac{\exp\left(\frac{nt^{2}}{2}\right)}{\exp(t\Delta)} = \exp\left(\frac{nt^{2}}{2} - t\Delta\right).$$

Set  $t = \Delta/n$ :

$$\mathbf{Pr}\Big[Y \ge \Delta\Big] \le \exp\left(\frac{n}{2}\left(\frac{\Delta}{n}\right)^2 - \frac{\Delta}{n}\Delta\right) = \exp\left(-\frac{\Delta^2}{2n}\right)$$

### 12.3.2 Chernoff inequality...

### 12.3.2.1 ...what it really says

By theorem:

$$\mathbf{Pr}\Big[Y \ge \Delta\Big] = \sum_{i=\Delta}^{n} \mathbf{Pr}\Big[Y = i\Big] = \sum_{i=n/2+\Delta/2}^{n} \frac{\binom{n}{i}}{2^{n}} \le \exp\left(-\frac{\Delta^{2}}{2n}\right),$$

### 12.3.3 Chernoff inequality...

### 12.3.3.1 symmetry

**Corollary 12.3.3.** Let  $X_1, \ldots, X_n$  be n independent random variables, such that  $\mathbf{Pr}[X_i = 1] = \mathbf{Pr}[X_i = -1] = \frac{1}{2}$ , for  $i = 1, \ldots, n$ . Let  $Y = \sum_{i=1}^n X_i$ . Then, for any  $\Delta > 0$ , we have

$$\mathbf{Pr}\Big[|Y| \ge \Delta\Big] \le 2\exp\left(-\frac{\Delta^2}{2n}\right)$$

#### 12.3.3.2 Chernoff inequality for coin flips

 $X_1, \ldots, X_n$  be *n* independent coin flips, such that  $\mathbf{Pr}[X_i = 1] = \mathbf{Pr}[X_i = 0] = \frac{1}{2}$ , for  $i = 1, \ldots, n$ . Let  $Y = \sum_{i=1}^n X_i$ . Then, for any  $\Delta > 0$ , we have

$$\Pr\left[\frac{n}{2} - Y \ge \Delta\right] \le \exp\left(-\frac{2\Delta^2}{n}\right)$$
  
and 
$$\Pr\left[Y - \frac{n}{2} \ge \Delta\right] \le \exp\left(-\frac{2\Delta^2}{n}\right).$$

In particular, we have  $\Pr\left[\left|Y - \frac{n}{2}\right| \ge \Delta\right] \le 2 \exp\left(-\frac{2\Delta^2}{n}\right)$ . **Note:** Variables  $X_i \in \{0, 1\}$ . Previous slide  $X_i \in \{-1, 1\}$  (different result!).

### 12.3.3.3 The special case we needed

**Lemma 12.3.4.** In a sequence of M coin flips, the probability that the number of ones is smaller than  $L \leq M/4$  is at most  $\exp(-M/8)$ .

*Proof:* Let  $Y = \sum_{i=1}^{m} X_i$  the sum of the M coin flips. By the above corollary, we have:

$$\mathbf{Pr}\left[Y \le L\right] = \mathbf{Pr}\left[\frac{M}{2} - Y \ge \frac{M}{2} - L\right] = \mathbf{Pr}\left[\frac{M}{2} - Y \ge \Delta\right],$$

where  $\Delta = M/2 - L \ge M/4$ . Using the above Chernoff inequality, we get  $\Pr\left[Y \le L\right] \le \exp\left(-\frac{2\Delta^2}{M}\right) \le \exp(-M/8)$ .

## 12.4 The Chernoff Bound — General Case

### 12.4.1 The Chernoff Bound

### 12.4.1.1 The general problem

Problem 12.4.1. Let  $X_1, \ldots, X_n$  be *n* independent Bernoulli trials, where

$$\mathbf{Pr}[X_i = 1] = p_i$$
 and  $\mathbf{Pr}[X_i = 0] = 1 - p_i$ ,

and let denote

$$Y = \sum_{i} X_{i} \qquad \mu = \mathbf{E}[Y] \,.$$

Question: what is the probability that  $Y \ge (1+\delta)\mu$ .

### 12.4.2 The Chernoff Bound

12.4.2.1 The general case

**Theorem 12.4.2 (Chernoff inequality).** For any  $\delta > 0$ ,

$$\mathbf{Pr}\Big[Y > (1+\delta)\mu\Big] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Or in a more simplified form, for any  $\delta \leq 2e - 1$ ,

$$\mathbf{Pr}\Big[Y > (1+\delta)\mu\Big] < \exp(-\mu\delta^2/4),$$

and

$$\mathbf{Pr}\Big[Y > (1+\delta)\mu\Big] < 2^{-\mu(1+\delta)},$$

for  $\delta \geq 2e-1$ .

### 12.4.2.2 Theorem

**Theorem 12.4.3.** Under the same assumptions as the theorem above, we have

$$\mathbf{Pr}\Big[Y < (1-\delta)\mu\Big] \le \exp\left(-\mu\frac{\delta^2}{2}\right).$$

## 12.5 Treaps

### 12.5.0.1 Balanced binary search trees...

- (A) Work usually by storing additional information.
- (B) Idea: For every element x inserted randomly choose **priority**  $p(x) \in [0, 1]$ .
- (C)  $X = \{x_1, \dots, x_n\}$ priorities:  $p(x_1), \dots, p(x_n)$ .
- (D)  $x_k$ : lowest priority in X.
- (E) Make  $x_k$  the root.
- (F) partition X in the natural way:
  - (A) L: set of all the numbers smaller than  $x_k$  in X, and
  - (B) R: set of all the numbers larger than  $x_k$  in X.





Continuing recursively, we have:

- (A) L: set of all the numbers smaller than  $x_k$  in X, and
- (B) R: set of all the numbers larger than  $x_k$  in X.

Definition 12.5.1. Resulting tree a *treap*.

Tree over the elements, and a heap over the priorities; that is, TREAP = TREE + HEAP.

### 12.5.0.3 Treaps continued

Lemma 12.5.2. *S*: *n* elements.

Expected depth of treap  $\mathfrak{T}$  for S is  $O(\log(n))$ . Depth of treap  $\mathfrak{T}$  for S is  $O(\log(n))$  w.h.p.

Proof: QuickSort...

### 12.5.1 Operations 12.5.1.1 Treaps - implementation

**Observation 12.5.3.** Given n distinct elements, and their (distinct) priorities, the treap storing them is uniquely defined.

### 12.5.1.2 Rotate right...



### 12.5.1.3 Insertion 12.5.1.4 Treaps – insertion

- (A) x: an element x to insert.
- (B) Insert it into  $\mathcal{T}$  as a regular binary tree.
- (C) Takes  $O(\text{height}(\mathcal{T}))$ .
- (D) x is a leaf in the treap.
- (E) Pick priority  $p(x) \in [0, 1]$ .
- (F) Valid search tree,.. but priority heap is broken at x.
- (G) Fix priority heap around x.

### 12.5.1.5 Fix treap for a leaf x...

```
RotateUp(x)

y \leftarrow parent(x)

while p(y) > p(x) do

if y.left\_child = x then

RotateRight(y)

else

RotateLeft(y)

y \leftarrow parent(x)

Insertion takes O(height(\mathfrak{T})).
```

### 12.5.1.6 Treaps – deletion

- (A) Deletion is just an insertion done in reverse.
- (B) x: element to delete.
- (C) Set  $p(x) \leftarrow +\infty$ ,
- (D) rotate x down till its a leaf.
- (E) Rotate so that child with lower priority becomes new parent.
- (F) x is now leaf deleting is easy...

### 12.5.1.7 Split

- (A) x: element stored in treap  $\mathfrak{T}$ .
- (B) split  $\mathfrak{T}$  into two treaps one treap  $\mathfrak{T}_{\leq x}$  and treap  $\mathfrak{T}_{>}$  for all the elements larger than x.
- (C) Set  $p(x) \leftarrow -\infty$ ,

- (D) fix priorities by rotation.
- (E) x item is now the root.
- (F) Splitting is now easy....
- (G) Restore x to its original priority. Fix by rotations.

### 12.5.1.8 Meld

- (A)  $\mathfrak{T}_L$  and  $\mathfrak{T}_R$ : treaps.
- (B) all elements in  $\mathcal{T}_L$ ; all elements in  $\mathcal{T}_R$ .
- (C) Want to merge them into a single treap...

### $12.5.1.9 \quad Treap-summary \\$

**Theorem 12.5.4.** Let  $\mathcal{T}$  be an empty treap, after a sequence of  $m = n^c$  insertions, where c is some constant.

- $d: arbitrary \ constant.$
- The probability depth  $\mathfrak{T}$  ever exceed  $d \log n$  is  $\leq 1/n^{O(1)}$ .

A treap can handle insertion/deletion in  $O(\log n)$  time with high probability.

### 12.5.1.10 Proof

*Proof:* (A)  $\mathcal{T}_1, \ldots, \mathcal{T}_m$ : sequence of treaps.

(B)  $\mathcal{T}_i$  is treap after *i*th operation.

(C)  $\alpha_i = \mathbf{Pr}\left[\operatorname{depth}(\mathfrak{T}_i) > tc' \log n\right] = \mathbf{Pr}\left[\operatorname{depth}(\mathfrak{T}_i) > c't\left(\frac{\log n}{\log|\mathfrak{T}_i|}\right) \cdot \log|\mathfrak{T}_i|\right] \le \frac{1}{n^{O(1)}},$ 

(D) Use union bound...

### 12.5.1.11 Bibliographical Notes

- (A) Chernoff inequality was a rediscovery of Bernstein inequality.
- (B) ...published in 1924 by Sergei Bernstein.
- (C) Treaps were invented by Siedel and Aragon Seidel and Aragon [1996].
- (D) Experimental evidence suggests that Treaps performs reasonably well in practice see Cho and Sahni [2000].
- (E) Old implementation of treaps I wrote in C is available here: http://valis.cs.uiuc.edu/blog/ ?p=6060.

## Bibliography

- S. Cho and S. Sahni. A new weight balanced binary search tree. Int. J. Found. Comput. Sci., 11(3): 485–513, 2000.
- J. Matoušek and J. Nešetřil. *Invitation to Discrete Mathematics*. Oxford Univ Press, 1998. ISBN 0198502079. URL http://www4.oup.co.uk/isbn/0-19-850208-7.

R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16:464–497, 1996.