
Chapter 12

Randomized Algorithms II – High
Probability

NEW CS 473: Theory II, Fall 2015
October 6, 2015

12.1 Understanding the binomial distribution

12.1.0.1 Binomial distribution

Xn = numbers of heads when flipping a coin n times.

Claim

Pr
[
Xn = i

]
=

(n
i

)
2n

.

Where:
(
n
k

)
= n!

(n−k)!k!
.

Indeed,
(
n
i

)
is the number of ways to choose i elements out of n elements (i.e., pick which i coin flip

come up heads).

Each specific such possibility (say 0100010...) had probability 1/2n.

12.1.0.2 Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads?
...we get a binomial distribution.
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12.1.0.3 Massive randomness.. Is not that random.

This is known as concentration of mass .

This is a very special case of the law of large numbers.

12.1.1 Side note...

12.1.1.1 Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to) the nor-
mal/Gaussian distribution.

12.1.1.2 Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.
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12.1.1.3 What is really hiding below the Normal distribution?

Taken from Matoušek and Nešetřil [1998].

12.2 QuickSort and Treaps with High Probability
12.2.0.1 Proof of high probability of QuickSort

(A) T : n items to be sorted.
(B) t ∈ T : element.
(C) Xi: the size of subproblem Si in ith level of recursion containing t.
(D) X0 = n, and

E
[
Xi

∣∣∣Xi−1

]
≤ Pr[lucky]

3

4
Xi−1 +Pr[unlucky]Xi−1

(E) Lucky = pivot used in Si is in rank

[
1

4
|Si| ,

3

4
|Si|
]

(F) Pr[lucky] = 1/2.
(G) Pr[lucky] = 1/2. As such...

E
[
Xi

∣∣∣Xi−1

]
≤ 1

2

3

4
Xi−1 +

1

2
Xi−1 =

7

8
Xi−1.

12.2.0.2 Proof of high probability of QuickSort

(A) T : n items to be sorted.
(B) t ∈ T : element.
(C) Xi: the size of subproblem in ith level of recursion containing t.

(D) X0 = n, and E
[
Xi

∣∣∣Xi−1

]
≤ 1

2
3
4
Xi−1 +

1
2
Xi−1 ≤ 7

8
Xi−1.

(E) ∀ random variables E
[
X
]
= Ey

[
E
[
X
∣∣∣Y = y

] ]
.
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(F) E
[
Xi

]
= Ey

[
E
[
Xi

∣∣∣Xi−1 = y
] ]
≤ EXi−1=y

[
7
8
y
]
= 7

8 E
[
Xi−1

]
≤
(
7
8

)i
E[X0] =

(
7
8

)i
n.

12.2.0.3 Proof of high probability of QuickSort

(A) M = 8 log8/7 n: µ = E
[
XM

]
≤
(
7
8

)M
n ≤ 1

n8n = 1
n7 .

(B) Markov’s Inequality: For a non-negative variable X, and t > 0, we have: Pr

[
X ≥ t

]
≤

E[X]

t
.

(C) By Markov’s inequality:

Pr

 t participates
> M recursive

calls

 ≤ Pr
[
XM ≥ 1

]
≤ E[XM ]

1
≤ 1

n7
.

(D) Probability any element of input participates > M recursive calls ≤ n(1/n7) ≤ 1/n6.

12.2.1 High probability via Chernoff inequality
12.2.1.1 Show that QuickSort running time is O(n log n)

(A) QuickSort picks a pivot, splits into two subproblems, and continues recursively.
(B) Track single element in input.
(C) Game ends, when this element is alone in subproblem.
(D) Show every element in input, participates ≤ 32 lnn rounds (with high enough probability).
(E) Ei: event ith element participates > 32 lnn rounds.
(F) CQS: number of comparisons performed by QuickSort.
(G) Running time O(CQS).

(H) Probability of failure is α = Pr
[
CQS ≥ 32n lnn

]
≤ Pr[

⋃
i Ei] ≤

∑n
i=1Pr

[
Ei

]
.

... by the union bound.

12.2.1.2 Show that QuickSort running time is O(n log n)

(A) Probability of failure is α = Pr
[
CQS ≥ 32n lnn

]
≤ Pr[

⋃
i Ei] ≤

∑n
i=1Pr

[
Ei

]
.

(B) Union bound : for any two events A and B: Pr[A ∪B] ≤ Pr[A] +Pr[B].
(C) Assume: Pr[Ei] ≤ 1/n3.

(D) Bad probability... α ≤
∑n

i=1 Pr
[
Ei

]
≤
∑n

i=1
1
n3 = 1

n2 .

(E) =⇒ QuickSort performs ≤ 32n lnn comparisons, w.h.p.
(F) =⇒ QuickSort runs in O(n log n) time, with high probability.

12.2.2 Proving that an element participates in small number of rounds

12.2.3 Proving that an element...

12.2.3.1 ... participates in small number of rounds.

(A) n: number of elements in input for QuickSort.
(B) x: Arbitrary element x in input.
(C) S1: Input.
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(D) Si: input to ith level recursive call that include x.
(E) x lucky in jth iteration, if balanced split...
|Sj+1| ≤ (3/4) |Sj| and |Sj \ Sj+1| ≤ (3/4) |Sj|

(F) Yj = 1 ⇐⇒ x lucky in jth iteration.

(G) Pr
[
Yj

]
= 1

2
.

(H) Observation: Y1, Y2, . . . , Ym are independent variables.
(I) x can participate ≤ ρ = log4/3 n ≤ 3.5 lnn rounds.

(J) ...since |Sj| ≤ n(3/4)# of lucky iteration in1...j.
(K) If ρ lucky rounds in first k rounds =⇒ |Sk| ≤ (3/4)ρn ≤ 1.

12.2.4 Proving that an element...

12.2.4.1 ... participates in small number of rounds.

(A) Brain reset!
(B) Q: How many rounds x participates in = how many coin flips till one gets ρ heads?
(C) A: In expectation, 2ρ times.

12.2.5 Proving that an element...

12.2.5.1 ... participates in small number of rounds.

(A) Assume the following:

Lemma 12.2.1. In M coin flips: Pr[# heads ≤M/4] ≤ exp(−M/8).

(B) Set M = 32 lnn ≥ 8ρ.
(C) Pr[Yj = 0] = Pr[Yj = 1] = 1/2.
(D) Y1, Y2, . . . , YM are independent.
(E) =⇒ probability ≤ ρ ≤M/4 ones in Y1, . . . , YM is

≤ exp

(
−M

8

)
≤ exp(−ρ) ≤ 1

n3
.

(F) =⇒ probability x participates in M recursive calls of QuickSort ≤ 1/n3.

12.2.6 Proving that an element...

12.2.6.1 ... participates in small number of rounds.

(A) n input elements. Probability depth of recursion in QuickSort > 32 lnn is ≤ (1/n3) ∗ n = 1/n2.
(B) Result:

Theorem 12.2.2. With high probability (i.e., 1− 1/n2) the depth of the recursion of QuickSort
is ≤ 32 lnn. Thus, with high probability, the running time of QuickSort is O(n log n).

(C) Same result holds for MatchNutsAndBolts.
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12.3 Chernoff inequality
12.3.0.1 Preliminaries

(A) X,Y : Random variables are independent if ∀x, y:

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

]
·Pr

[
Y = y

]
.

(B) The following is easy to prove:

Claim 12.3.1. If X and Y are independent
=⇒ E[XY ] = E[X]E[Y ].
=⇒ Z = eX and W = eY are independent.

12.3.0.2 Chernoff inequality

Theorem 12.3.2 (Chernoff inequality). X1, . . . , Xn: n independent random variables, such that
Pr[Xi = 1] = Pr[Xi = −1] = 1

2
, for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we

have

Pr
[
Y ≥ ∆

]
≤ exp

(
−∆2/2n

)
.

12.3.0.3 Proof of Chernoff inequality

Fix arbitrary t > 0:

Pr
[
Y ≥ ∆

]
= Pr

[
tY ≥ t∆

]
= Pr

[
exp(tY ) ≥ exp(t∆)

]
≤

E
[
exp(tY )

]
exp(t∆)

,

12.3.1 Proof of Chernoff inequality

12.3.1.1 Continued...

E
[
exp(tXi)

]
=

1

2
et +

1

2
e−t =

et + e−t

2

=
1

2

(
1 +

t

1!
+

t2

2!
+

t3

3!
+ · · ·

)
+

1

2

(
1− t

1!
+

t2

2!
− t3

3!
+ · · ·

)
= 1 +

t2

2!
+ + · · ·+ t2k

(2k)!
+ · · · .

However: (2k)! = k!(k + 1)(k + 2) · · · 2k ≥ k!2k.

E
[
exp(tXi)

]
=

∞∑
i=0

t2i

(2i)!
≤

∞∑
i=0

t2i

2i(i!)
=≤

∞∑
i=0

1

i!

(
t2

2

)i

=≤ exp

(
t2

2

)
.
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E
[
exp(tY )

]
= E

[
exp

(∑
i

tXi

)]
= E

[∏
i

exp(tXi)

]
=

n∏
i=1

E
[
exp(tXi)

]
≤

n∏
i=1

exp

(
t2

2

)
=≤ exp

(
nt2

2

)
.

Pr
[
Y ≥ ∆

]
≤

E
[
exp(tY )

]
exp(t∆)

≤
exp
(

nt2

2

)
exp(t∆)

= exp

(
nt2

2
− t∆

)
.

Set t = ∆/n:

Pr
[
Y ≥ ∆

]
≤ exp

(
n

2

(
∆

n

)2

− ∆

n
∆

)
= exp

(
−∆2

2n

)
.

12.3.2 Chernoff inequality...

12.3.2.1 ...what it really says

By theorem:

Pr
[
Y ≥ ∆

]
=

n∑
i=∆

Pr
[
Y = i

]
=

n∑
i=n/2+∆/2

(
n
i

)
2n
≤ exp

(
−∆2

2n

)
,

12.3.3 Chernoff inequality...

12.3.3.1 symmetry

Corollary 12.3.3. Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] =
1
2
, for i = 1, . . . , n. Let Y =

∑n
i=1Xi. Then, for any ∆ > 0, we have

Pr
[
|Y | ≥ ∆

]
≤ 2 exp

(
−∆2

2n

)
.

12.3.3.2 Chernoff inequality for coin flips

X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 1] = Pr[Xi = 0] = 1
2
, for i = 1, . . . , n. Let

Y =
∑n

i=1Xi. Then, for any ∆ > 0, we have

Pr
[ n
2
− Y ≥ ∆

]
≤ exp

(
−2∆2

n

)
and Pr

[
Y − n

2
≥ ∆

]
≤ exp

(
−2∆2

n

)
.

In particular, we have Pr
[∣∣∣Y − n

2

∣∣∣ ≥ ∆
]
≤ 2 exp

(
−2∆2

n

)
.

Note: Variables Xi ∈ {0, 1}. Previous slide Xi ∈ {−1, 1} (different result!).
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12.3.3.3 The special case we needed

Lemma 12.3.4. In a sequence of M coin flips, the probability that the number of ones is smaller than
L ≤M/4 is at most exp(−M/8).

Proof: Let Y =
∑m

i=1Xi the sum of the M coin flips. By the above corollary, we have:

Pr
[
Y ≤ L

]
= Pr

[
M

2
− Y ≥ M

2
− L

]
= Pr

[
M

2
− Y ≥ ∆

]
,

where ∆ = M/2− L ≥M/4. Using the above Chernoff inequality, we get Pr
[
Y ≤ L

]
≤ exp

(
−2∆2

M

)
≤

exp(−M/8).

12.4 The Chernoff Bound — General Case

12.4.1 The Chernoff Bound

12.4.1.1 The general problem

Problem 12.4.1. Let X1, . . . Xn be n independent Bernoulli trials, where

Pr
[
Xi = 1

]
= pi and Pr

[
Xi = 0

]
= 1− pi,

and let denote

Y =
∑
i

Xi µ = E[Y ] .

Question: what is the probability that Y ≥ (1 + δ)µ.

12.4.2 The Chernoff Bound

12.4.2.1 The general case

Theorem 12.4.2 (Chernoff inequality). For any δ > 0,

Pr
[
Y > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ

.

Or in a more simplified form, for any δ ≤ 2e− 1,

Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

and

Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ),

for δ ≥ 2e− 1.
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12.4.2.2 Theorem

Theorem 12.4.3. Under the same assumptions as the theorem above, we have

Pr
[
Y < (1− δ)µ

]
≤ exp

(
−µδ

2

2

)
.

12.5 Treaps
12.5.0.1 Balanced binary search trees...

(A) Work usually by storing additional information.
(B) Idea: For every element x inserted

randomly choose priority p(x) ∈ [0, 1].
(C) X = {x1, . . . , xn}

priorities: p(x1), . . . , p(xn).
(D) xk: lowest priority in X.
(E) Make xk the root.
(F) partition X in the natural way:

(A) L: set of all the numbers smaller than xk in X, and
(B) R: set of all the numbers larger than xk in X.

12.5.0.2 Treaps

p(xk)

xk

TL TR

Continuing recursively, we have:
(A) L: set of all the numbers smaller

than xk in X, and
(B) R: set of all the numbers larger

than xk in X.

Definition 12.5.1. Resulting tree a treap.
Tree over the elements, and a heap over the priorities; that is,
treap = tree + heap.

12.5.0.3 Treaps continued

Lemma 12.5.2. S: n elements.
Expected depth of treap T for S is O(log(n)).
Depth of treap T for S is O(log(n)) w.h.p.

Proof: QuickSort...

12.5.1 Operations
12.5.1.1 Treaps - implementation

Observation 12.5.3. Given n distinct elements, and their (distinct) priorities, the treap storing them
is uniquely defined.
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12.5.1.2 Rotate right...

0.2
x

0.6
A

0.5
C

E
0.4

D
0.3

=⇒
E
0.4

0.2
x

0.6
A

0.5
C

D
0.3

12.5.1.3 Insertion
12.5.1.4 Treaps – insertion

(A) x: an element x to insert.
(B) Insert it into T as a regular binary tree.
(C) Takes O(height(T)).
(D) x is a leaf in the treap.
(E) Pick priority p(x) ∈ [0, 1].
(F) Valid search tree,.. but priority heap is broken at x.
(G) Fix priority heap around x.

12.5.1.5 Fix treap for a leaf x...

RotateUp(x)
y ← parent(x)
while p(y) > p(x) do

if y.left child = x then

RotateRight(y)
else

RotateLeft(y)
y ← parent(x)

Insertion takes O(height(T)).

12.5.1.6 Treaps – deletion

(A) Deletion is just an insertion done in reverse.
(B) x: element to delete.
(C) Set p(x)← +∞,
(D) rotate x down till its a leaf.
(E) Rotate so that child with lower priority becomes new parent.
(F) x is now leaf – deleting is easy...

12.5.1.7 Split

(A) x: element stored in treap T.
(B) split T into two treaps – one treap T≤x and treap T> for all the elements larger than x.
(C) Set p(x)← −∞,
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(D) fix priorities by rotation.
(E) x item is now the root.
(F) Splitting is now easy....
(G) Restore x to its original priority. Fix by rotations.

12.5.1.8 Meld

(A) TL and TR: treaps.
(B) all elements in TL ¡ all elements in TR.
(C) Want to merge them into a single treap...

12.5.1.9 Treap – summary

Theorem 12.5.4. Let T be an empty treap, after a sequence of m = nc insertions, where c is some
constant.

d: arbitrary constant.
The probability depth T ever exceed d log n is ≤ 1/nO(1).
A treap can handle insertion/deletion in O(log n) time with high probability.

12.5.1.10 Proof

Proof: (A) T1, . . . ,Tm: sequence of treaps.
(B) Ti is treap after ith operation.

(C) αi = Pr
[
depth(Ti) > tc′ log n

]
= Pr

[
depth(Ti) > c′t

(
log n
log|Ti|

)
· log |Ti|

]
≤ 1

nO(1) ,

(D) Use union bound...

12.5.1.11 Bibliographical Notes

(A) Chernoff inequality was a rediscovery of Bernstein inequality.
(B) ...published in 1924 by Sergei Bernstein.
(C) Treaps were invented by Siedel and Aragon Seidel and Aragon [1996].
(D) Experimental evidence suggests that Treaps performs reasonably well in practice see Cho and Sahni

[2000].
(E) Old implementation of treaps I wrote in C is available here: http://valis.cs.uiuc.edu/blog/

?p=6060.
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