Chapter 11

Randomized Algorithms
11.1 Randomized Algorithms

11.2 Some Probability

11.2.1 Probability - quick review

11.2.1.1 With pictures

(A) Ω: Sample space

(B) Ω: Is a set of elementary event/atomic event/simple event.

(C) Every atomic event $x \in \Omega$ has Probability $\Pr[x]$.

(D) $X \equiv f(x)$: Random variable associate a value with each atomic event $x \in \Omega$.

(E) $E[X]$: **Expectation:**

The average value of the random variable $X \equiv f(x)$.

$$E[X] = \sum_{x \in X} f(x) \ast \Pr[X = x].$$

(F) An event $A \subseteq \Omega$ is a collection of atomic events.

$$\Pr[A] = \sum_{a \in A} \Pr[a].$$

Complement event $A = \Omega \setminus A$.

Ω
11.2.2 Probability - quick review

11.2.2.1 Definitions

Definition 11.2.1 (Informal). Random variable: a function from probability space to \mathbb{R}. Associates value \forall atomic events in probability space.

Definition The conditional probability of X given Y is

$$\Pr[X = x \mid Y = y] = \frac{\Pr[(X = x) \cap (Y = y)]}{\Pr[Y = y]}.$$

Equivalent to

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x \mid Y = y] \cdot \Pr[Y = y].$$

11.2.3 Probability - quick review

11.2.3.1 Even more definitions

Definition 11.2.2. The events $X = x$ and $Y = y$ are independent, if

$$\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$

$$\equiv \Pr[X = x \mid Y = y] = \Pr[X = x].$$

Definition 11.2.3. The expectation of a random variable X its average value:

$$E[X] = \sum_x x \cdot \Pr[X = x],$$

11.2.3.2 Linearity of expectations

Proof: Use definitions, do the math. See notes for details. ■

11.2.4 Probability - quick review

11.2.4.1 Conditional Expectation

Definition 11.2.5. X, Y: random variables. The conditional expectation of X given Y (i.e., you know $Y = y$):

$$E[X \mid Y] = E[X \mid Y = y] = \sum_x x \cdot \Pr[X = x \mid Y = y].$$

$E[X]$ is a number.

$f(y) = E[X \mid Y = y]$ is a function.
Lemma 11.2.6. \(\forall X, Y \) (not necessarily independent): \(E[X] = E[E[X \mid Y]] \).

\[
E[E[X \mid Y]] = E_y [E[X \mid Y = y]]
\]

Proof: Use definitions, and do the math. See class notes. \(\blacksquare \)
Problem 11.3.1 (Sorting Nuts and Bolts). (A)
Input: Set \(n \) nuts + \(n \) bolts.
(B) Every nut have a matching bolt.
(C) All different sizes.
(D) Task: Match nuts to bolts. (In sorted order).
(E) Restriction: You can only compare a nut to a bolt.
(F) Q: How to match the \(n \) nuts to the \(n \) bolts quickly?
11.3.1 Sorting nuts & bolts...

11.3.1.1 Algorithm

(A) Naive algorithm...
(B) ...better algorithm?

11.3.1.2 Sorting nuts & bolts...

\[
\text{\texttt{MatchNutsAndBolts}}(N: \text{nuts}, B: \text{bolts}) \\
\quad \text{Pick a random nut } n_{\text{pivot}} \text{ from } N \\
\quad \text{Find its matching bolt } b_{\text{pivot}} \text{ in } B \\
\quad B_L \leftarrow \text{All bolts in } B \text{ smaller than } n_{\text{pivot}} \\
\quad N_L \leftarrow \text{All nuts in } N \text{ smaller than } b_{\text{pivot}} \\
\quad B_R \leftarrow \text{All bolts in } B \text{ larger than } n_{\text{pivot}} \\
\quad N_R \leftarrow \text{All nuts in } N \text{ larger than } b_{\text{pivot}} \\
\quad \text{MatchNutsAndBolts}(N_R, B_R) \\
\quad \text{MatchNutsAndBolts}(N_L, B_L)
\]

QuickSort style...

11.3.2 Running time analysis

11.3.3 What is running time for randomized algorithms?

11.3.3.1 Definitions

Definition 11.3.2. \(\mathcal{RT}(U) \): random variable – running time of the algorithm on input \(U \).

Definition 11.3.3. Expected running time \(E[\mathcal{RT}(U)] \) for input \(U \).

Definition 11.3.4. expected running-time of algorithm for input size \(n \):

\[
T(n) = \max_{U \text{ is an input of size } n} E[\mathcal{RT}(U)].
\]

11.3.4 What is running time for randomized algorithms?

11.3.4.1 More definitions

Definition 11.3.5. rank(\(x \)): rank of element \(x \in S \) = number of elements in \(S \) smaller or equal to \(x \).

11.3.4.2 Nuts and bolts running time

Theorem 11.3.6. Expected running time \(\text{MatchNutsAndBolts} \) (QuickSort) is \(T(n) = O(n \log n) \). Worst case is \(O(n^2) \).
Proof: \(\Pr[\text{rank}(n_{\text{pivot}}) = k] = \frac{1}{n} \). Thus,

\[
T(n) = \mathbb{E}_{k=\text{rank}(n_{\text{pivot}})} \left[O(n) + T(k-1) + T(n-k) \right]
\]

\[
= O(n) + \mathbb{E}_k [T(k-1) + T(n-k)]
\]

\[
= O(n) + \sum_{k=1}^{n} \Pr[\text{Rank(Pivot)} = k]
\]

\[
\times (T(k-1) + T(n-k))
\]

\[
= O(n) + \sum_{k=1}^{n} \frac{1}{n} \cdot (T(k-1) + T(n-k)),
\]

Solution is \(T(n) = O(n \log n) \).

11.3.4.3 Alternative incorrect solution

11.3.5 Alternative intuitive analysis...

11.3.5.1 Which is not formally correct

(A) MatchNutsAndBolts is \textit{lucky} if \(\frac{n}{4} \leq \text{rank}(n_{\text{pivot}}) \leq \frac{3}{4}n \).

(B) \(\Pr[\text{“lucky”}] = 1/2 \).

(C) \(T(n) \leq O(n) + \Pr[\text{“lucky”}] \times (T(n/4) + T(3n/4)) + \Pr[\text{“unlucky”}] \times T(n) \).

(D) \(T(n) = O(n) + \frac{1}{2} \times (T(\frac{n}{4}) + T(\frac{3n}{4})) + \frac{1}{2}T(n) \).

(E) Rewriting: \(T(n) = O(n) + T(n/4) + T((3/4)n) \).

(F) ... solution is \(O(n \log n) \).

11.3.6 What are randomized algorithms?

11.3.6.1 Worst case vs. average case

Expected running time of a randomized algorithm is

\[
T(n) = \max_U \mathbb{E}_{U \text{ is an input of size } n} \mathbb{E} [RT(U)],
\]

Worst case running time of deterministic algorithm:

\[
T(n) = \max_U \mathbb{E}_{U \text{ is an input of size } n} RT(U),
\]

11.3.6.2 High Probability running time...

Definition 11.3.7. Running time \textbf{Alg} is \(O(f(n)) \) with \textit{high probability} if

\[
\Pr[RT(\text{Alg}(n)) \geq c \cdot f(n)] = o(1).
\]

\[\implies \Pr[RT(\text{Alg}) > c \cdot f(n)] \rightarrow 0 \text{ as } n \rightarrow \infty.\]

Usually use weaker def:

\[
\Pr[RT(\text{Alg}(n)) \geq c \cdot f(n)] \leq \frac{1}{n^d}.
\]

Technical reasons... also assume that \(\mathbb{E}[RT(\text{Alg}(n))] = O(f(n)) \).
11.4 Slick analysis of QuickSort

11.4.0.1 A Slick Analysis of QuickSort

Let $Q(A)$ be number of comparisons done on input array A:

(A) For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.

(B) X_{ij}: indicator random variable for R_{ij}.

$X_{ij} = 1 \iff$ rank i element compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$$

and hence by linearity of expectation,

$$E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].$$

11.4.0.2 A Slick Analysis of QuickSort

R_{ij} = rank i element is compared with rank j element.

Question: What is $\Pr[R_{ij}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

(A) If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare 5 to 8 moved to subproblem.

(B) If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to 8 moved to subproblem.

11.4.1 A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

(A) If pivot is 5 (rank 4). Bingo!

(B) If pivot is 8 (rank 7). Bingo!

(C) If pivot in between the two numbers (say 6 [rank 5]):

5 and 8 will never be compared to each other.
11.4.2 A Slick Analysis of QuickSort

11.4.2.1 Question: What is Pr[R_{i,j}]?

Conclusion:

\[R_{i,j} \text{ happens if and only if:} \]

\[\begin{align*}
& \text{i} \text{th or} \text{j} \text{th ranked element is the first pivot out of} \\
& \text{i} \text{th to} \text{j} \text{th ranked elements.}
\end{align*} \]

How to analyze this?

Thinking acrobatics!

(A) Assign every element in the array a random priority (say in \([0, 1]\)).

(B) Choose pivot to be the element with lowest priority in subproblem.

(C) Equivalent to picking pivot uniformly at random

\(\text{(as QuickSort do).} \)

11.4.3 A Slick Analysis of QuickSort

11.4.3.1 Question: What is Pr[R_{i,j}]?

How to analyze this?

Thinking acrobatics!

(A) Assign every element in the array a random priority (say in \([0, 1]\)).

(B) Choose pivot to be the element with lowest priority in subproblem.

\[\implies R_{i,j} \text{ happens if either} \ i \text{ or} \ j \text{ have lowest priority out of elements rank} \ i \text{ to} \ j, \]

There are \(k = j - i + 1 \) relevant elements.

\[\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}. \]

11.4.3.2 A Slick Analysis of QuickSort

Question: What is Pr[R_{ij}]?

Lemma 11.4.1. \(\Pr[R_{ij}] = \frac{2}{j - i + 1}. \)

Proof: Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be elements of \(A \) in sorted order. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

Observation: If pivot is chosen outside \(S \) then all of \(S \) either in left array or right array.

Observation: \(a_i \) and \(a_j \) separated when a pivot is chosen from \(S \) for the first time. Once separated no comparison.

Observation: \(a_i \) is compared with \(a_j \) if and only if either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation...
11.4.4 A Slick Analysis of QuickSort

11.4.4.1 Continued...

Lemma 11.4.2. \(\Pr[R_{ij}] = \frac{2}{j-i+1} \).

Proof: Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \). Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

Observation: \(a_i \) is compared with \(a_j \) if and only if either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.

Observation: Given that pivot is chosen from \(S \) the probability that it is \(a_i \) or \(a_j \) is exactly \(\frac{2}{|S|} = \frac{2}{(j-i+1)} \) since the pivot is chosen uniformly at random from the array.

11.4.5 A Slick Analysis of QuickSort

11.4.5.1 Continued...

\[E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] \]

Lemma 11.4.3. \(\Pr[R_{ij}] = \frac{2}{j-i+1} \).

\[E[Q(A)] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \]

\[\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \]

\[\leq 2 \sum_{1 \leq i < n} H_n \]

\[\leq 2nH_n = O(n \log n) \]

11.5 Quick Select

11.6 Randomized Selection

11.6.0.1 Randomized Quick Selection

Input Unsorted array \(A \) of \(n \) integers, an integer \(j \).

Goal Find the \(j \)th smallest number in \(A \) (rank \(j \) number)

Randomized Quick Selection

(A) Pick a pivot element \textit{uniformly at random} from the array.
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(C) Return pivot if rank of pivot is \(j \).
(D) Otherwise recurse on one of the arrays depending on \(j \) and their sizes.
11.6.0.2 Algorithm for Randomized Selection

Assume for simplicity that \(A \) has distinct elements.

\[
\textbf{QuickSelect}(A, j): \\
\text{Pick pivot } x \text{ uniformly at random from } A \\
\text{Partition } A \text{ into } A_{\text{less}}, x, \text{ and } A_{\text{greater}} \text{ using } x \text{ as pivot} \\
\text{if } (|A_{\text{less}}| = j - 1) \text{ then} \\
\quad \text{return } x \\
\text{if } (|A_{\text{less}}| \geq j) \text{ then} \\
\quad \text{return } \textbf{QuickSelect}(A_{\text{less}}, j) \\
\text{else} \\
\quad \text{return } \textbf{QuickSelect}(A_{\text{greater}}, j - |A_{\text{less}}| - 1)
\]

11.6.0.3 QuickSelect analysis

(A) \(S_1, S_2, \ldots, S_k \) be the subproblems considered by the algorithm.
 Here \(|S_1| = n \).
(B) \(S_i \) would be \textit{successful} if \(|S_i| \leq (3/4)|S_{i-1}| \)
(C) \(Y_1 = \) number of recursive calls till first successful iteration.
 Clearly, total work till this happens is \(O(Y_1n) \).
(D) \(n_i = \) size of the subproblem immediately after the \((i-1) \)th successful iteration.
(E) \(Y_i = \) number of recursive calls after the \((i-1) \)th successful call, till the \(i \)th successful iteration.
(F) Running time is \(O(\sum_i n_i Y_i) \).

11.6.0.4 QuickSelect analysis

Example

\(S_i = \) subarray used in \(i \)th recursive call
\(|S_i| = \) size of this subarray
Red indicates successful iteration.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Inst & S_1 & S_2 & S_3 & S_4 & S_5 & S_6 & S_7 & S_8 & S_9 \\
\hline
|S_1| & 100 & 70 & 60 & 50 & 40 & 30 & 25 & 5 & 2 \\
Succ & Y_1 = 2 & Y_2 = 4 & Y_3 = 2 & Y_4 = 1 \\
n_i & n_1 = 100 & n_2 = 60 & n_3 = 25 & n_4 = 2 \\
\hline
\end{tabular}

(A) All the subproblems after \((i-1)\)th successful iteration till \(i\)th successful iteration have size \(\leq n_i\).
(B) Total work: \(O(\sum_i n_i Y_i) \).

11.6.0.5 QuickSelect analysis

Total work: \(O(\sum_i n_i Y_i) \).

We have:
(A) \(n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n \).
(B) \(Y_i \) is a random variable with geometric distribution
 Probability of \(Y_i = k \) is \(1/2^i \).
(C) \(E[Y_i] = 2 \).
 As such, expected work is proportional to

\[
E\left[\sum_i n_i Y_i\right] = \sum_i E[n_i Y_i] \leq \sum_i E\left[(3/4)^{i-1}n Y_i\right] \\
= n \sum_i (3/4)^{i-1} E[Y_i] = n \sum_{i=1}^\infty (3/4)^{i-1} 2 \leq 8n.
\]
11.6.0.6 QuickSelect analysis

Theorem 11.6.1. The expected running time of QuickSelect is $O(n)$.