NEW CS 473: Theory II, Fall 2015

Randomized Algorithms

Lecture 11
October 1, 2015

11.1: Randomized Algorithms

11.2: Some Probability

Probability - quick review

With pictures

(1) Ω : Sample space

Probability - quick review

With pictures

(1) Ω : Sample space
(2) Ω : Is a set of elementary event/atomic event/simple event.

Probability - quick review

With pictures

(1) Ω : Sample space
(2) Ω : Is a set of elementary event/atomic event/simple event.
(3) Every atomic event $x \in \Omega$ has Probability $\operatorname{Pr}[x]$.

Probability - quick review

With pictures

(1) Ω : Is a set of elementary event/atomic event/simple event.
(2) Every atomic event $x \in \Omega$ has Probability $\operatorname{Pr}[x]$.
(3) $X \equiv f(x)$: Random variable associate a value with each atomic event $\boldsymbol{x} \in \Omega$.

Probability - quick review

With pictures

(1) Every atomic event $\boldsymbol{x} \in \Omega$ has Probability $\operatorname{Pr}[x]$.
(2) $X \equiv f(x)$: Random variable associate a value with each atomic event $\boldsymbol{x} \in \Omega$.
(3) $\mathrm{E}[X]$: Expectation:

The average value of the random variable $X \equiv f(x)$. $\mathrm{E}[\boldsymbol{X}]=\sum_{x \in X} f(x) * \operatorname{Pr}[\boldsymbol{X}=x]$.

Probability - quick review

With pictures

(1) $X \equiv f(x)$: Random variable associate a value with each atomic event $x \in \Omega$.
(2) $\mathrm{E}[X]$: Expectation:

The average value of the random variable $X \equiv f(x)$. $\mathrm{E}[X]=\sum_{x \in X} f(x) * \operatorname{Pr}[X=x]$.
(0) An event $\boldsymbol{A} \subseteq \Omega$ is a collection of atomic events.
$\operatorname{Pr}[A]=\sum_{a \in A} \operatorname{Pr}[a]$.
Complement event: $\bar{A}=\Omega \backslash \boldsymbol{A}$.

Probability - quick review

With pictures

(1) $X \equiv f(x)$: Random variable associate a value with each atomic event $\boldsymbol{x} \in \boldsymbol{\Omega}$.
(2) $\mathrm{E}[\boldsymbol{X}]$: Expectation:

The average value of the random variable $X \equiv f(x)$. $\mathrm{E}[\boldsymbol{X}]=\sum_{x \in X} f(x) * \operatorname{Pr}[\boldsymbol{X}=x]$.
(3) An event $A \subseteq \Omega$ is a collection of atomic events.
$\operatorname{Pr}[A]=\sum_{a \in A} \operatorname{Pr}[a]$.

Complement event: $\bar{A}=\Omega \backslash A$.
(9) $\boldsymbol{A}, \boldsymbol{B}$ two events.

Probability - quick review

With pictures

(1) $\mathrm{E}[X]$: Expectation:

The average value of the random variable $X \equiv f(x)$.
$\mathrm{E}[\boldsymbol{X}]=\sum_{x \in X} f(x) * \operatorname{Pr}[X=x]$.
(2) An event $A \subseteq \Omega$ is a collection of atomic events.
$\operatorname{Pr}[A]=\sum_{a \in A} \operatorname{Pr}[a]$.
Complement event: $\bar{A}=\Omega \backslash A$.
(3) $\boldsymbol{A}, \boldsymbol{B}$ two events.
(9) $\boldsymbol{A} \cap \boldsymbol{B}$: The intersection event.
(5) $\boldsymbol{A} \cup \boldsymbol{B}$: The union event.

Probability - quick review

With pictures

(1) An event $A \subseteq \Omega$ is a collection of atomic events.
$\operatorname{Pr}[A]=\sum_{a \in A} \operatorname{Pr}[a]$.
Complement event: $\bar{A}=\Omega \backslash A$.
(2) $\boldsymbol{A}, \boldsymbol{B}$ two events.
(3) $\boldsymbol{A} \cap \boldsymbol{B}$: The intersection event.
(9) $\boldsymbol{A} \cup \boldsymbol{B}$: The union event.
(5) $\operatorname{Pr}[A \cup B]=$
$\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$
$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.

Probability - quick review

With pictures

(1) $\boldsymbol{A}, \boldsymbol{B}$ two events.
(2) $\boldsymbol{A} \cap \boldsymbol{B}$: The intersection event.
(3) $\boldsymbol{A} \cup B$: The union event.
(1) $\operatorname{Pr}[A \cup B]=$
$\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$
$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.

- Tell you that \boldsymbol{B} happened.

Probability - quick review

With pictures

(1) $\boldsymbol{A} \cap \boldsymbol{B}$: The intersection event.
(2) $\boldsymbol{A} \cup B$: The union event.
(-) $\operatorname{Pr}[A \cup B]=$
$\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$
$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.

- Tell you that \boldsymbol{B} happened.
© ...then what is the probability that \boldsymbol{A} happened?
Conditional probability

$\operatorname{Pr}[\boldsymbol{A} \mid \boldsymbol{B}]=$
$\operatorname{Pr}[\boldsymbol{A} \cap B] / \operatorname{Pr}[B]$.

Probability - quick review

With pictures

(1) $\boldsymbol{A} \cup B$: The union event.
(2) $\operatorname{Pr}[A \cup B]=$
$\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$
$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.
(0) Tell you that B happened.
(1) ...then what is the probability that \boldsymbol{A} happened?
Conditional probability
$\operatorname{Pr}[\boldsymbol{A} \mid \boldsymbol{B}]=$
$\operatorname{Pr}[\boldsymbol{A} \cap \boldsymbol{B}] / \operatorname{Pr}[\boldsymbol{B}]$.

Probability - quick review

With pictures

(1) $\operatorname{Pr}[A \cup B]=$ $\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$ $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.
(2) Tell you that \boldsymbol{B} happened.
(...then what is the probability that \boldsymbol{A} happened?
Conditional probability
$\operatorname{Pr}[A \mid B]=$
$\operatorname{Pr}[\boldsymbol{A} \cap \boldsymbol{B}] / \operatorname{Pr}[\boldsymbol{B}]$.

Probability - quick review

With pictures

(1) Tell you that \boldsymbol{B} happened.
(2) ...then what is the probability that \boldsymbol{A} happened?
Conditional probability $\operatorname{Pr}[\boldsymbol{A} \mid \boldsymbol{B}]=$
$\operatorname{Pr}[\boldsymbol{A} \cap \boldsymbol{B}] / \operatorname{Pr}[\boldsymbol{B}]$.

Probability - quick review

Definitions

Definition (Informal)

Random variable: a function from probability space to \mathbb{R}. Associates value \forall atomic events in probability space.

Definition
 The conditional probability of \boldsymbol{X} given \boldsymbol{Y} is

Equivalent to

Probability - quick review

Definitions

Definition (Informal)

Random variable: a function from probability space to \mathbb{R}. Associates value \forall atomic events in probability space.

Definition

The conditional probability of \boldsymbol{X} given \boldsymbol{Y} is

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[(X=x) \cap(Y=y)]}{\operatorname{Pr}[Y=y]}
$$

Equivalent to

Probability - quick review

Definitions

Definition (Informal)

Random variable: a function from probability space to \mathbb{R}. Associates value \forall atomic events in probability space.

Definition

The conditional probability of \boldsymbol{X} given \boldsymbol{Y} is

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[(X=x) \cap(Y=y)]}{\operatorname{Pr}[Y=y]}
$$

Equivalent to

Probability - quick review

Even more definitions

Definition

The events $\boldsymbol{X}=\boldsymbol{x}$ and $\boldsymbol{Y}=\boldsymbol{y}$ are independent, if

$$
\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x} \cap \boldsymbol{Y}=\boldsymbol{y}]=\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x}] \cdot \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]
$$

Definition

The expectation of a random variable \boldsymbol{X} its average value

Probability - quick review

Even more definitions

Definition

The events $\boldsymbol{X}=\boldsymbol{x}$ and $\boldsymbol{Y}=\boldsymbol{y}$ are independent, if

$$
\begin{aligned}
& \operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x} \cap \boldsymbol{Y}=\boldsymbol{y}]=\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x}] \cdot \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}] . \\
\equiv & \operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x} \mid \boldsymbol{Y}=\boldsymbol{y}]=\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x}] .
\end{aligned}
$$

Definition

The expectation of a random variable \boldsymbol{X} its average value:

$$
\mathbf{E}[\boldsymbol{X}]=\sum_{x} x \cdot \operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x}]
$$

Linearity of expectations

Lemma (Linearity of expectation.)

\forall random variables \boldsymbol{X} and $\boldsymbol{Y}: \mathbf{E}[\boldsymbol{X}+\boldsymbol{Y}]=\mathbf{E}[\boldsymbol{X}]+\mathbf{E}[\boldsymbol{Y}]$.

Proof.

Use definitions, do the math. See notes for details.

Probability - quick review

Conditional Expectation

Definition

$\boldsymbol{X}, \boldsymbol{Y}$: random variables. The conditional expectation of \boldsymbol{X} given \boldsymbol{Y} (i.e., you know $\boldsymbol{Y}=\boldsymbol{y}$):

$$
\mathbf{E}[\boldsymbol{X} \mid \boldsymbol{Y}]=\mathbf{E}[\boldsymbol{X} \mid \boldsymbol{Y}=\boldsymbol{y}]=\sum_{x} \boldsymbol{x} * \operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x} \mid \boldsymbol{Y}=\boldsymbol{y}]
$$

$\mathrm{E}[\boldsymbol{X}]$ is a number.
$\boldsymbol{f}(\boldsymbol{y})=\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}=\boldsymbol{y}]$ is a function.

Conditional Expectation

Lemma

$\forall \boldsymbol{X}, \boldsymbol{Y}$ (not necessarily independent): $\mathbf{E}[\boldsymbol{X}]=\mathbf{E}[\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}]]$.

Proof.

Use definitions, and do the math. See class notes.

Conditional Expectation

Lemma

$\forall \boldsymbol{X}, \boldsymbol{Y}$ (not necessarily independent): $\mathbf{E}[\boldsymbol{X}]=\mathbf{E}[\mathbf{E}[\boldsymbol{X} \mid \boldsymbol{Y}]]$.
$\mathrm{E}[\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}]]=\mathrm{E}_{y}[\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}=\boldsymbol{y}]]$

Proof.

Use definitions, and do the math. See class notes.

Conditional Expectation

Lemma

$\forall \boldsymbol{X}, \boldsymbol{Y}$ (not necessarily independent): $\mathrm{E}[\boldsymbol{X}]=\mathrm{E}[\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}]]$.
$\mathrm{E}[\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}]]=\mathrm{E}_{y}[\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}=\boldsymbol{y}]]$

Proof.

Use definitions, and do the math. See class notes.

11.3: Sorting Nuts and Bolts

Sorting Nuts \& Bolts

Problem (Sorting Nuts and Bolts)

(1) Input: Set \boldsymbol{n} nuts $+\boldsymbol{n}$ bolts.
(2) Every nut have a matching bolt.
(3) All different sizes.
(9) Task: Match nuts to bolts.
 (In sorted order).
(5) Restriction: You can only compare a nut to a bolt.
(6) Q: How to match the n nuts to the n bolts quickly?

Sorting Nuts \& Bolts

Problem (Sorting Nuts and Bolts)

(1) Input: Set \boldsymbol{n} nuts $+\boldsymbol{n}$ bolts.
(2) Every nut have a matching bolt.
(3) All different sizes.
(4) Task: Match nuts to bolts.
 (In sorted order).
(5) Restriction: You can only compare a nut to a bolt.
© Q: How to match the n nuts to the n bolts quickly?

Sorting Nuts \& Bolts

Problem (Sorting Nuts and Bolts)

(1) Input: Set \boldsymbol{n} nuts $+\boldsymbol{n}$ bolts.
(2) Every nut have a matching bolt.
(3) All different sizes.
(4) Task: Match nuts to bolts. (In sorted order).
(5) Restriction: You can only compare a nut to a bolt.

- Q. How to match the n nuts to the n bolts quickly?

Sorting Nuts \& Bolts

Problem (Sorting Nuts and Bolts)

(1) Input: Set \boldsymbol{n} nuts $+\boldsymbol{n}$ bolts.
(2) Every nut have a matching bolt.
(3) All different sizes.
(0) Task: Match nuts to bolts. (In sorted order).

- Restriction: You can only compare a nut to a bolt.
- Q: How to match the n nuts to the n bolts quickly?

Sorting Nuts \& Bolts

Problem (Sorting Nuts and Bolts)

(1) Input: Set \boldsymbol{n} nuts $+\boldsymbol{n}$ bolts.
(2) Every nut have a matching bolt.
(3) All different sizes.
(1) Task: Match nuts to bolts.
(In sorted order).

- Restriction: You can only compare a nut to a bolt.
(0) Q: How to match the \boldsymbol{n} nuts to the n bolts quickly?

Sorting nuts \& bolts...

Algorithm
(1) Naive algorithm...

Sorting nuts \& bolts...

Algorithm

(1) Naive algorithm...
(2) ...better algorithm?

Sorting nuts \& bolts...

MatchNutsAndBolts(\boldsymbol{N} : nuts, \boldsymbol{B} : bolts) Pick a random nut $\boldsymbol{n}_{\text {pivot }}$ from \boldsymbol{N} Find its matching bolt $\boldsymbol{b}_{\text {pivot }}$ in \boldsymbol{B}
$\boldsymbol{B}_{\boldsymbol{L}} \leftarrow$ All bolts in \boldsymbol{B} smaller than $\boldsymbol{n}_{\text {pivot }}$ $N_{L} \leftarrow$ All nuts in N smaller than $b_{\text {pivot }}$ $\boldsymbol{B}_{\boldsymbol{R}} \leftarrow$ All bolts in \boldsymbol{B} larger than $\boldsymbol{n}_{\text {pivot }}$ $\boldsymbol{N}_{R} \leftarrow$ All nuts in \boldsymbol{N} larger than $\boldsymbol{b}_{\text {pivot }}$ MatchNutsAndBolts $\left(N_{R}, B_{R}\right)$ MatchNutsAndBolts $\left(N_{L}, B_{L}\right)$

QuickSort style...

Sorting nuts \& bolts...

MatchNutsAndBolts(\boldsymbol{N} : nuts, \boldsymbol{B} : bolts) Pick a random nut $\boldsymbol{n}_{\text {pivot }}$ from \boldsymbol{N} Find its matching bolt $\boldsymbol{b}_{\text {pivot }}$ in \boldsymbol{B}
$\boldsymbol{B}_{\boldsymbol{L}} \leftarrow$ All bolts in \boldsymbol{B} smaller than $\boldsymbol{n}_{\text {pivot }}$ $\boldsymbol{N}_{\boldsymbol{L}} \leftarrow$ All nuts in \boldsymbol{N} smaller than $\boldsymbol{b}_{\text {pivot }}$ $\boldsymbol{B}_{\boldsymbol{R}} \leftarrow$ All bolts in \boldsymbol{B} larger than $\boldsymbol{n}_{\text {pivot }}$ $\boldsymbol{N}_{R} \leftarrow$ All nuts in \boldsymbol{N} larger than $\boldsymbol{b}_{\text {pivot }}$ MatchNutsAndBolts $\left(N_{R}, B_{R}\right)$ MatchNutsAndBolts $\left(N_{L}, B_{L}\right)$

QuickSort style...

11.3.1: Running time analysis

What is running time for randomized algorithms?

Definitions

Definition

$\mathcal{R T}(\boldsymbol{U})$: random variable - running time of the algorithm on input \boldsymbol{U}.

Definition
 Expected running time $\mathbb{E}[\mathcal{R T}(U)]$ for input U

Definition

exnected rurning-time of algorithm for input size n

max

What is running time for randomized algorithms?

 Definitions
Definition

$\mathcal{R T}(\boldsymbol{U})$: random variable - running time of the algorithm on input \boldsymbol{U}.

Definition

Expected running time $\mathbf{E}[\mathcal{R T}(\boldsymbol{U})]$ for input \boldsymbol{U}.

Definition

expected running-time of algorithm for input size n :

What is running time for randomized algorithms?

 Definitions
Definition

$\mathcal{R T}(\boldsymbol{U})$: random variable - running time of the algorithm on input

 \boldsymbol{U}.
Definition

Expected running time $\mathbf{E}[\mathcal{R T}(\boldsymbol{U})]$ for input \boldsymbol{U}.

Definition

expected running-time of algorithm for input size \boldsymbol{n} :

$$
\boldsymbol{T}(\boldsymbol{n})=\max _{\boldsymbol{U} \text { is an input of size } n} \mathrm{E}[\mathcal{R T}(\boldsymbol{U})]
$$

What is running time for randomized algorithms?

More definitions

Definition

$\operatorname{rank}(\boldsymbol{x})$: rank of element $\boldsymbol{x} \in \boldsymbol{S}=$ number of elements in \boldsymbol{S} smaller or equal to \boldsymbol{x}.

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(\mathrm{n})=\boldsymbol{O}(\mathrm{n} \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(n_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
T(n)=\underset{k=\operatorname{rank}\left(n_{\text {pivot }}\right)}{\mathrm{E}}[O(n)+T(k-1)+T(n-k)]
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(\mathrm{n})=\boldsymbol{O}(\mathrm{n} \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(n_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
\begin{aligned}
T(n) & =\underset{k=\operatorname{rank}\left(n_{\text {pivot }}\right)}{\mathrm{E}}[O(n)+T(k-1)+T(n-k)] \\
& =O(n)+\underset{k}{\mathrm{E}}[T(k-1)+T(n-k)]
\end{aligned}
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $T(n)=O(n \log n)$. Worst case is $O\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(n_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
T(n)=O(n)+\underset{k}{\mathrm{E}}[T(k-1)+T(n-k)]
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(\mathrm{n})=\boldsymbol{O}(\mathrm{n} \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
\begin{aligned}
& T(n)=O(n)+\underset{k}{\mathrm{E}}[T(k-1)+T(n-k)] \\
&=O(n)+\sum_{k=1}^{n} \operatorname{Pr}[\operatorname{Rank}(P i v o t)=k] \\
& *(T(k-1)+T(n-k))
\end{aligned}
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(n)=O(n \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(n_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
\begin{aligned}
T(n)=O(n)+\sum_{k=1}^{n} \operatorname{Pr} & {[\operatorname{Rank}(\operatorname{Pivot})=k] } \\
* & (T(k-1)+T(n-k))
\end{aligned}
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(\mathrm{n})=\boldsymbol{O}(\mathrm{n} \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
\begin{aligned}
T(n)= & O(n)+\sum_{k=1}^{n} \operatorname{Pr}[\operatorname{Rank}(\text { Pivot })=k] \\
& *(T(k-1)+T(n-k)) \\
= & O(n)+\sum_{k=1}^{n} \frac{1}{n} \cdot(T(k-1)+T(n-k))
\end{aligned}
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(\mathrm{n})=\boldsymbol{O}(\mathrm{n} \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(n_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
T(n)=O(n)+\sum_{k=1}^{n} \frac{1}{n} \cdot(T(k-1)+T(n-k))
$$

Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (QuickSort) is $\boldsymbol{T}(\mathrm{n})=\boldsymbol{O}(\mathrm{n} \log n)$. Worst case is $\boldsymbol{O}\left(n^{2}\right)$.

Proof.

$\operatorname{Pr}\left[\operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right)=k\right]=\frac{1}{n}$. Thus,

$$
T(n)=O(n)+\sum_{k=1}^{n} \frac{1}{n} \cdot(T(k-1)+T(n-k))
$$

Solution is $T(n)=O(n \log n)$.

11.3.1.1:Alternative incorrect solution

Alternative intuitive analysis...

Which is not formally correct
(1) MatchNutsAndBolts is lucky if $\frac{n}{4} \leq \operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right) \leq \frac{3}{4} \boldsymbol{n}$.
(2) $\operatorname{Pr}[$ "lucky" $]=1 / 2$.
(3) $T(n) \leq O(n)+\operatorname{Pr}[$ "lucky" $] *(T(n / 4)+T(3 n / 4))+$ $\operatorname{Pr}[$ "unlucky"] $* T(n)$.
(9) $T(n)=O(n)+\frac{1}{2} *\left(T\left(\frac{n}{4}\right)+T\left(\frac{3}{4} n\right)\right)+\frac{1}{2} T(n)$
(3) Rewriting: $T(n)=O(n)+T(n / 4)+T((3 / 4) n)$.
(6) \ldots solution is $O(n \log n)$.

Alternative intuitive analysis...

Which is not formally correct
(1) MatchNutsAndBolts is lucky if $\frac{n}{4} \leq \operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right) \leq \frac{3}{4} \boldsymbol{n}$.
(2) $\operatorname{Pr}[$ "lucky"] $=1 / 2$.
(3) $T(n) \leq O(n)+\operatorname{Pr}[$ "lucky" $] *(T(n / 4)+T(3 n / 4))+$ $\operatorname{Pr}[$ "unlucky"] $* T(n)$.
(a) $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})+\frac{1}{2} *\left(\boldsymbol{T}\left(\frac{n}{4}\right)+T\left(\frac{3}{4} n\right)\right)+\frac{1}{2} T(n)$
(3) Rewriting: $T(n)=O(n)+T(n / 4)+T((3 / 4) n)$.
(0) ... solution is $O(n \log n)$

Alternative intuitive analysis...

Which is not formally correct
(1) MatchNutsAndBolts is lucky if $\frac{n}{4} \leq \operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right) \leq \frac{3}{4} \boldsymbol{n}$.
(2) $\operatorname{Pr}[$ "lucky"] $=1 / 2$.

- $T(n) \leq O(n)+\operatorname{Pr}[$ "lucky"] $*(T(n / 4)+T(3 n / 4))+$ $\operatorname{Pr}[$ "unlucky"] $* T(n)$.
- $T(n)=O(n)+\frac{1}{2} *\left(T\left(\frac{n}{4}\right)+T\left(\frac{3}{4} n\right)\right)+\frac{1}{2} T(n)$
- Rewriting: $T(n)=O(n)+T(n / 4)+T((3 / 4) n)$.
(0... solution is $O(n \log n)$

Alternative intuitive analysis...

Which is not formally correct
(1) MatchNutsAndBolts is lucky if $\frac{n}{4} \leq \operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right) \leq \frac{3}{4} \boldsymbol{n}$.
(2) $\operatorname{Pr}[$ "lucky"] $=1 / 2$.

- $T(n) \leq O(n)+\operatorname{Pr}[$ "lucky"] $*(T(n / 4)+T(3 n / 4))+$ $\operatorname{Pr}[$ "unlucky"] $* T(n)$.
(1) $T(n)=O(n)+\frac{1}{2} *\left(T\left(\frac{n}{4}\right)+T\left(\frac{3}{4} n\right)\right)+\frac{1}{2} T(n)$.
© Rewriting: $T(n)=O(n)+T(n / 4)+T((3 / 4) n)$
- ... solution is $O(n \log n)$

Alternative intuitive analysis...

Which is not formally correct

(1) MatchNutsAndBolts is lucky if $\frac{n}{4} \leq \operatorname{rank}\left(n_{\text {pivot }}\right) \leq \frac{3}{4} n$.
(2) $\operatorname{Pr}[$ "lucky"] $=1 / 2$.

- $T(n) \leq O(n)+\operatorname{Pr}[$ "lucky"] $*(T(n / 4)+T(3 n / 4))+$ $\operatorname{Pr}[$ "unlucky"] $* T(n)$.
- $T(n)=O(n)+\frac{1}{2} *\left(T\left(\frac{n}{4}\right)+T\left(\frac{3}{4} n\right)\right)+\frac{1}{2} T(n)$.
(0. Rewriting: $T(n)=O(n)+T(n / 4)+T((3 / 4) n)$.

。
solution is $O(n \log n)$

Alternative intuitive analysis...

Which is not formally correct

(1) MatchNutsAndBolts is lucky if $\frac{n}{4} \leq \operatorname{rank}\left(\boldsymbol{n}_{\text {pivot }}\right) \leq \frac{3}{4} \boldsymbol{n}$.
(2) $\operatorname{Pr}[$ "lucky"] $=1 / 2$.

- $T(n) \leq O(n)+\operatorname{Pr}[$ "lucky"] $*(T(n / 4)+T(3 n / 4))+$ $\operatorname{Pr}[$ "unlucky"] $* T(n)$.
- $T(n)=O(n)+\frac{1}{2} *\left(T\left(\frac{n}{4}\right)+T\left(\frac{3}{4} n\right)\right)+\frac{1}{2} T(n)$.
- Rewriting: $T(n)=O(n)+T(n / 4)+T((3 / 4) n)$.
- ... solution is $O(n \log n)$.
11.3.2: What are randomized algorithms?

Worst case vs. average case

Expected running time of a randomized algorithm is

$$
T(n)=\max _{U \text { is an input of size } n} \mathrm{E}[\mathcal{R T}(\boldsymbol{U})]
$$

Worst case running time of deterministic algorithm:

$$
\boldsymbol{T}(\boldsymbol{n})=\max _{\boldsymbol{U} \text { is an input of size } \boldsymbol{n}} \mathcal{R T}(\boldsymbol{U})
$$

High Probability running time...

Definition

Running time Alg is $O(f(n))$ with high probability if

$$
\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)]=o(1)
$$

$\Longrightarrow \operatorname{Pr}[\mathcal{R T}(\mathrm{Alg})>c * f(n)] \rightarrow 0$ as $n \rightarrow \infty$.

Usually use weaker def:

Technical reasons... also assume that $\mathrm{E}[\mathcal{R T}(\operatorname{Alg}(n))]=O(f(n))$

High Probability running time...

Definition

Running time Alg is $O(f(n))$ with high probability if

$$
\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)]=o(1)
$$

$\Longrightarrow \operatorname{Pr}[\mathcal{R T}(\mathrm{Alg})>c * f(n)] \rightarrow 0$ as $n \rightarrow \infty$.

Usually use weaker def:

$\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)]$

Technical reasons... also assume that $\mathrm{E}[\mathcal{R T}(\operatorname{Alg}(n))]=O(f(n))$.

High Probability running time...

Definition

Running time Alg is $O(f(n))$ with high probability if

$$
\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)]=o(1)
$$

$\Longrightarrow \operatorname{Pr}[\mathcal{R T}(\mathrm{Alg})>c * f(n)] \rightarrow 0$ as $n \rightarrow \infty$.
Usually use weaker def:

$$
\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)] \leq \frac{1}{n^{d}}
$$

High Probability running time...

Definition

Running time Alg is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$ with high probability if

$$
\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)]=o(1)
$$

$\Longrightarrow \operatorname{Pr}[\mathcal{R T}(\mathrm{Alg})>c * f(n)] \rightarrow 0$ as $n \rightarrow \infty$.
Usually use weaker def:

$$
\operatorname{Pr}[\mathcal{R T}(\operatorname{Alg}(n)) \geq c \cdot f(n)] \leq \frac{1}{n^{d}}
$$

Technical reasons... also assume that $\mathrm{E}[\mathcal{R T}(\operatorname{Alg}(n))]=O(f(n))$.

11.4: Slick analysis of QuickSort

A Slick Analysis of QuickSort

Let $\boldsymbol{Q}(\boldsymbol{A})$ be number of comparisons done on input array \boldsymbol{A} :
(1) For $1 \leq i<j<\boldsymbol{n}$ let $\boldsymbol{R}_{i j}$ be the event that rank \boldsymbol{i} element is compared with rank j element.
(c) $X_{i j}$: indicator random variable for $\boldsymbol{R}_{i j}$.
$\boldsymbol{X}_{i j}=1 \Longleftrightarrow$ rank i element compared with rank j element, otherwise $\mathbf{0}$.

and hence by linearity of expectation,

A Slick Analysis of QuickSort

Let $\boldsymbol{Q}(\boldsymbol{A})$ be number of comparisons done on input array \boldsymbol{A} :
(1) For $1 \leq i<j<\boldsymbol{n}$ let $\boldsymbol{R}_{i j}$ be the event that rank \boldsymbol{i} element is compared with rank j element.
(2) $\boldsymbol{X}_{i j}$: indicator random variable for $\boldsymbol{R}_{i j}$.
$\boldsymbol{X}_{i j}=1 \Longleftrightarrow$ rank i element compared with rank j element, otherwise 0 .

$$
Q(A)=\sum_{1 \leq i<j \leq n} X_{i j}
$$

and hence by linearity of expectation,

$$
\mathrm{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathrm{E}\left[\boldsymbol{X}_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]
$$

A Slick Analysis of QuickSort

$\boldsymbol{R}_{\boldsymbol{i j}}=$ rank \boldsymbol{i} element is compared with rank \boldsymbol{j} element.
Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?
$\begin{array}{llllllll}7 & 5 & 9 & 1 & 3 & 4 & 8 & 6\end{array}$

A Slick Analysis of QuickSort

$\boldsymbol{R}_{i j}=$ rank \boldsymbol{i} element is compared with rank \boldsymbol{j} element.
Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

A Slick Analysis of QuickSort

$\boldsymbol{R}_{i j}=$ rank \boldsymbol{i} element is compared with rank \boldsymbol{j} element.
Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[\boldsymbol{R}_{4,7}\right]$.

A Slick Analysis of QuickSort

$\boldsymbol{R}_{i j}=$ rank \boldsymbol{i} element is compared with rank \boldsymbol{j} element.
Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

(1) If pivot too small (say 3 [rank 2]). Partition and call recursively:

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & 8 \\
\hline
\end{array}
$$

Decision if to compare 5 to 8 is moved to subproblem.

A Slick Analysis of QuickSort

$\boldsymbol{R}_{i j}=$ rank \boldsymbol{i} element is compared with rank \boldsymbol{j} element.
Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?

7	5	9	1	3	4	8	6

With ranks: $\begin{array}{lllllllll}6 & 4 & 8 & 1 & 2 & 3 & 7 & 5\end{array}$
(1) If pivot too small (say 3 [rank 2]). Partition and call recursively:

7	5	9	1	3	4	8

1	3	7	5	9	4	8	6

Decision if to compare 5 to 8 is moved to subproblem.
(2) If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to 8 moved to subproblem.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[\boldsymbol{R}_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & \hline 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 & 6 \\
\hline
\end{array}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[\boldsymbol{R}_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array}
$$

$$
\Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 & 6 \\
\hline
\end{array}
$$

(2) If pivot is 8 (rank 7). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & \hline 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 6 & 8 & 9 \\
\hline
\end{array}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[\boldsymbol{R}_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & \hline 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 & 6 \\
\hline
\end{array}
$$

(2) If pivot is 8 (rank 7). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & 6 \\
\hline
\end{array}
$$

(3) If pivot in between the two numbers (say 6 [rank 5]):

7	5	9	1	3	4	8

5 and 8 will never be compared to each other.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

Conclusion:

$\boldsymbol{R}_{i, j}$ happens if and only if: i th or j th ranked element is the first pivot out of i th to \boldsymbol{j} th ranked elements.

How to analyze this?

Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
(3) Equivalent to picking pivot uniformly at random (as QuickSort do).

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

How to analyze this?

Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
$\Longrightarrow \boldsymbol{R}_{i, j}$ happens if either \boldsymbol{i} or \boldsymbol{j} have lowest priority out of elements rank i to \boldsymbol{j},
There are $k=j-i+1$ relevant elements

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

How to analyze this?

Thinking acrobatics!
(1) Assign every element in the array a random priority (say in $[0,1]$).
(2) Choose pivot to be the element with lowest priority in subproblem.
$\Longrightarrow \boldsymbol{R}_{i, j}$ happens if either \boldsymbol{i} or \boldsymbol{j} have lowest priority out of elements rank i to j,
There are $k=j-i+1$ relevant elements.

$$
\operatorname{Pr}\left[R_{i, j}\right]=\frac{2}{k}=\frac{2}{j-i+1} .
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?

Lemma

$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$

Proof

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be elements of A in sorted order
Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: a_{i} and a_{j} separated when a pivot is chosen from S for the first time. Once separated no comparison.
Observation: a_{i} is compared with a_{j} if and only if either a_{i} or a_{j} is chosen as a pivot from S at separation.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?
Lemma
$\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1}$.

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be elements of \boldsymbol{A} in sorted order. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ and $\boldsymbol{a}_{\boldsymbol{j}}$ separated when a pivot is chosen from \boldsymbol{S} for the first time. Once separated no comparison.
Observation: a_{i} is compared with a_{j} if and only if either a_{i} or a_{j} is chosen as a pivot from S at separation.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]$?
Lemma
$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be elements of \boldsymbol{A} in sorted order. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside \boldsymbol{S} then all of \boldsymbol{S} either in left array or right array.
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ and $\boldsymbol{a}_{\boldsymbol{j}}$ separated when a pivot is chosen from \boldsymbol{S} for the first time. Once separated no comparison.
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ is compared with $\boldsymbol{a}_{\boldsymbol{j}}$ if and only if either $\boldsymbol{a}_{\boldsymbol{i}}$ or $\boldsymbol{a}_{\boldsymbol{j}}$ is chosen as a pivot from S at separation...

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}
$$

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be sort of \boldsymbol{A}. Let
$S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ is compared with $\boldsymbol{a}_{\boldsymbol{j}}$ if and only if either $\boldsymbol{a}_{\boldsymbol{i}}$ or $\boldsymbol{a}_{\boldsymbol{j}}$ is chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that it is a_{i} or a_{j} is exactly $2 /|S|=2 /(j-i+1)$ since the pivot is chosen uniformly at random from the array.

A Slick Analysis of QuickSort

Continued...

$$
\mathrm{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathrm{E}\left[\boldsymbol{X}_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[\boldsymbol{R}_{i j}\right] .
$$

Lemma

$$
\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1} .
$$

A Slick Analysis of QuickSort

 Continued...$$
\begin{aligned}
& \text { Lemma } \\
& \operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} \\
& \mathbf{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
\end{aligned}
$$

A Slick Analysis of QuickSort

Continued...

Lemma
 $$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}
$$

$$
\mathrm{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
\mathrm{E}[Q(A)] & =\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

A Slick Analysis of QuickSort

 Continued...
Lemma

$$
\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\mathrm{E}[Q(A)]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

 Continued...
Lemma

$$
\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\mathrm{E}[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1}
$$

A Slick Analysis of QuickSort

 Continued...
Lemma

$$
\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\mathrm{E}[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1}
$$

A Slick Analysis of QuickSort

 Continued...
Lemma

$$
\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\mathrm{E}[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}
$$

A Slick Analysis of QuickSort

Continued...

Lemma
 $$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}
$$

$$
\begin{aligned}
\mathrm{E}[Q(A)] & =2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\
& \leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n}
\end{aligned}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[\boldsymbol{R}_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
\mathrm{E}[Q(A)] & =2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\
& \leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n} \\
& \leq 2 n H_{n}=O(n \log n)
\end{aligned}
$$

11.5: Quick Select

11.6: Randomized Selection

Randomized Quick Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers, an integer \boldsymbol{j}.
Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Randomized Quick Selection

(1) Pick a pivot element uniformly at random from the array.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Return pivot if rank of pivot is \boldsymbol{j}.
(4) Otherwise recurse on one of the arrays depending on j and their sizes.

Algorithm for Randomized Selection

Assume for simplicity that \boldsymbol{A} has distinct elements.
QuickSelect ($\boldsymbol{A}, \boldsymbol{j}$):
Pick pivot \boldsymbol{x} uniformly at random from \boldsymbol{A}
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}, \boldsymbol{x}$, and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{x} as piv
if $\left(\left|A_{\text {less }}\right|=j-1\right)$ then
return x
if $\left(\left|A_{\text {less }}\right| \geq j\right)$ then
return QuickSelect ($\left.A_{\text {less }}, j\right)$
else
return QuickSelect ($A_{\text {greater }}, j-\left|A_{\text {less }}\right|-1$)

QuickSelect analysis

(1) $S_{1}, S_{2}, \ldots, S_{k}$ be the subproblems considered by the algorithm. Here $\left|S_{1}\right|=n$.
(2) S_{i} would be successful if $\left|S_{i}\right| \leq(3 / 4)\left|S_{i-1}\right|$
(3) $Y_{1}=$ number of recursive calls till first successful iteration. Clearly, total work till this happens is $O\left(Y_{1} n\right)$.
(4) $\boldsymbol{n}_{\boldsymbol{i}}=$ size of the subproblem immediately after the $(\boldsymbol{i}-1)$ th successful iteration.
(5) $Y_{i}=$ number of recursive calls after the $(i-1)$ th successful call, till the i th successful iteration.
(6) Running time is $\boldsymbol{O}\left(\sum_{i} \boldsymbol{n}_{\boldsymbol{i}} \boldsymbol{Y}_{i}\right)$.

QuickSelect analysis

Example

$S_{i}=$ subarray used in i th recursive call
$\left|S_{i}\right|=$ size of this subarray
Red indicates successful iteration.

Inst'	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
$\left\|S_{i}\right\|$	100	70	60	50	40	30	25	5	2
Succ' $^{\prime}$	$Y_{1}=2$	$Y_{2}=4$						$Y_{3}=2$	$Y_{4}=1$
$n_{i}=$	$n_{1}=100$	$n_{2}=60$						$n_{3}=25$	$n_{4}=2$

(1) All the subproblems after $(i-1)$ th successful iteration till i th successful iteration have sizal work: $O\left(\sum_{i} n_{i} \boldsymbol{Y}_{i}\right)$.

QuickSelect analysis

Example

$S_{i}=$ subarray used in i th recursive call
$\left|S_{i}\right|=$ size of this subarray
Red indicates successful iteration.

Inst' $^{\prime}$	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
$\left\|S_{i}\right\|$	100	70	60	50	40	30	25	5	2
Succ' $^{\prime}$	$Y_{1}=2$	$Y_{2}=4$					$Y_{3}=2$	$Y_{4}=1$	
$\boldsymbol{n}_{\boldsymbol{i}}=$	$\boldsymbol{n}_{1}=100$	$\boldsymbol{n}_{\mathbf{2}}=60$				$\boldsymbol{n}_{3}=25$	$\boldsymbol{n}_{\mathbf{4}}=2$		

(1) All the subproblems after $(i-1)$ th successful iteration till i th successful iteration have size $\leq \boldsymbol{n}_{\boldsymbol{i}}$.
(2) Total work: $O\left(\sum_{i} n_{i} \boldsymbol{Y}_{i}\right)$.

QuickSelect analysis

Total work: $\boldsymbol{O}\left(\sum_{i} \boldsymbol{n}_{\boldsymbol{i}} \boldsymbol{Y}_{\boldsymbol{i}}\right)$. We have:
(1) $n_{i} \leq(3 / 4) n_{i-1} \leq(3 / 4)^{i-1} n$.
(2) Y_{i} is a random variable with geometric distribution Probability of $Y_{i}=k$ is $1 / 2^{i}$.
(3) $\mathrm{E}\left[Y_{i}\right]=2$.

As such, expected work is proportional to

$$
\begin{aligned}
& \mathrm{E}\left[\sum_{i} n_{i} Y_{i}\right]=\sum_{i} \mathrm{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathrm{E}\left[(3 / 4)^{i-1} n Y_{i}\right] \\
& \quad=n \sum_{i}(3 / 4)^{i-1} \mathrm{E}\left[Y_{i}\right]=n \sum_{i=1}(3 / 4)^{i-1} 2 \leq 8 n
\end{aligned}
$$

QuickSelect analysis

Theorem
 The expected running time of QuickSelect is $\boldsymbol{O}(\mathbf{n})$.

Notes

Notes

Notes

Notes

