Randomized Algorithms

Lecture 11
October 1, 2015
11.1: Randomized Algorithms
11.2: Some Probability
Ω: Sample space
1. Ω: Sample space
2. Ω: Is a set of **elementary event**/atomic event/simple event.
1. \(\Omega \): Sample space

2. \(\Omega \): Is a set of **elementary event**/atomic event/simple event.

3. Every atomic event \(x \in \Omega \) has **Probability** \(\Pr[x] \).
1. Ω: Is a set of **elementary event**/atomic event/simple event.

2. Every atomic event $x \in \Omega$ has **Probability** $\Pr[x]$.

3. $X \equiv f(x)$: Random variable associate a value with each atomic event $x \in \Omega$.

1. Every atomic event $x \in \Omega$ has \textbf{Probability} $Pr[x]$.

2. $X \equiv f(x)$: Random variable associate a value with each atomic event $x \in \Omega$.

3. $E[X]$: \textbf{Expectation}:
 The average value of the random variable $X \equiv f(x)$.
 $E[X] = \sum_{x \in X} f(x) \cdot Pr[X = x]$.
1. $X \equiv f(x)$: Random variable associate a value with each atomic event $x \in \Omega$.

2. $E[X]$: Expectation:
The average value of the random variable $X \equiv f(x)$.

$$E[X] = \sum_{x \in X} f(x) \cdot \Pr[X = x].$$

3. An event $A \subseteq \Omega$ is a collection of atomic events.

$$\Pr[A] = \sum_{a \in A} \Pr[a].$$

Complement event: $\overline{A} = \Omega \setminus A$.
1. \(X \equiv f(x) \): Random variable associate a value with each atomic event \(x \in \Omega \).

2. \(E[X] \): **Expectation**: The average value of the random variable \(X \equiv f(x) \).
 \[
 E[X] = \sum_{x \in X} f(x) \cdot \Pr[X = x].
 \]

3. An event \(A \subseteq \Omega \) is a collection of atomic events.
 \[
 \Pr[A] = \sum_{a \in A} \Pr[a].
 \]
 Complement event: \(\overline{A} = \Omega \setminus A \).

4. \(A, B \) two events.
1. \(E[X] \): **Expectation:**
The average value of the random variable \(X \equiv f(x) \).
\[
E[X] = \sum_{x \in X} f(x) \times \Pr[X = x].
\]

2. An event \(A \subseteq \Omega \) is a collection of atomic events.
\[
\Pr[A] = \sum_{a \in A} \Pr[a].
\]
Complement event: \(\overline{A} = \Omega \setminus A \).

3. \(A, B \) two events.

4. \(A \cap B \): The intersection event.

5. \(A \cup B \): The union event.
An event $A \subseteq \Omega$ is a collection of atomic events.
\[\Pr[A] = \sum_{a \in A} \Pr[a]. \]
Complement event: $\overline{A} = \Omega \setminus A$.

2. A, B two events.

3. $A \cap B$: The intersection event.

4. $A \cup B$: The union event.

5. $\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]$
$\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$.

1. A, B two events.
2. $A \cap B$: The intersection event.
3. $A \cup B$: The union event.
4. $\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]$
 $\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$.
5. Tell you that B happened.
1. \(A \cap B \): The intersection event.
2. \(A \cup B \): The union event.
3. \[\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \]
 \[\Pr[A \cup B] \leq \Pr[A] + \Pr[B]. \]
4. Tell you that \(B \) happened.
5. …then what is the probability that \(A \) happened?

Conditional probability

\[\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} . \]
1. \(A \cup B \): The union event.
2. \[\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \]
 \(\Pr[A \cup B] \leq \Pr[A] + \Pr[B] \).
3. Tell you that \(B \) happened.
4. ...then what is the probability that \(A \) happened?
 Conditional probability
 \[\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} \]
1. \(\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \)
\(\Pr[A \cup B] \leq \Pr[A] + \Pr[B] \).

2. Tell you that \(B \) happened.

3. ...then what is the probability that \(A \) happened?

Conditional probability
\[\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} \]
1. Tell you that B happened.
2. ...then what is the probability that A happened?

Conditional probability

$$\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}.$$
Definition (Informal)

Random variable: a function from probability space to \mathbb{R}. Associates value \forall atomic events in probability space.

Definition

The conditional probability of X given Y is

$$ \Pr[X = x \mid Y = y] = \frac{\Pr[(X = x) \cap (Y = y)]}{\Pr[Y = y]}.$$

Equivalent to

$$ \Pr[(X = x) \cap (Y = y)] = \Pr[X = x \mid Y = y] \times \Pr[Y = y].$$
Definition (Informal)

Random variable: a function from probability space to \(\mathbb{R} \). Associates value \(\forall \) atomic events in probability space.

Definition

The **conditional probability** of \(X \) given \(Y \) is

\[
\Pr \left[X = x \mid Y = y \right] = \frac{\Pr \left[(X = x) \cap (Y = y) \right]}{\Pr \left[Y = y \right]}
\]

Equivalent to

\[
\Pr \left[(X = x) \cap (Y = y) \right] = \Pr \left[X = x \mid Y = y \right] \times \Pr \left[Y = y \right]
\]
Probability - quick review

Definitions

Definition (Informal)

Random variable: a function from probability space to \(\mathbb{R} \). Associates value \(\forall \) atomic events in probability space.

Definition

The **conditional probability** of \(X \) given \(Y \) is

\[
\Pr\left[X = x \mid Y = y \right] = \frac{\Pr\left[(X = x) \cap (Y = y) \right]}{\Pr\left[Y = y \right]}
\]

Equivalent to

\[
\Pr\left[(X = x) \cap (Y = y) \right] = \Pr\left[X = x \mid Y = y \right] \cdot \Pr\left[Y = y \right].
\]
The events $X = x$ and $Y = y$ are **independent**, if

$$
\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].
$$

The **expectation** of a random variable X its average value:

$$
E[X] = \sum_{x} x \cdot \Pr[X = x],
$$
Definition

The events \(X = x \) and \(Y = y \) are independent, if

\[
\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].
\]

\[\equiv \Pr[X = x \mid Y = y] = \Pr[X = x].\]

Definition

The expectation of a random variable \(X \) is its average value:

\[
E[X] = \sum_x x \cdot \Pr[X = x],
\]
Lemma (Linearity of expectation.)

∀ random variables X and Y: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.

Proof.

Use definitions, do the math. See notes for details.
Definition

X, Y: random variables. The **conditional expectation** of X given Y (i.e., you know $Y = y$):

$$E[X \mid Y] = E[X \mid Y = y] = \sum_x x \cdot \Pr(X = x \mid Y = y).$$

$E[X]$ is a number.

$f(y) = E[X \mid Y = y]$ is a function.
Lemma

∀ \(X, Y \) (not necessarily independent): \(E[X] = E[E[X | Y]] \).

\[
E[E[X | Y]] = E_y [E[X | Y = y]]
\]

Proof.

Use definitions, and do the math. See class notes.
Conditional Expectation

Lemma

∀ X, Y (not necessarily independent): \(E[X] = E\left[E\left[X \mid Y \right] \right] \).

\[E\left[E\left[X \mid Y \right] \right] = E_y \left[E\left[X \mid Y = y \right] \right] \]

Proof.

Use definitions, and do the math. See class notes.
Lemma

∀ X, Y (not necessarily independent): \(\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X | Y]] \).

\[\mathbb{E}[\mathbb{E}[X | Y]] = \mathbb{E}_y \mathbb{E}[X | Y = y] \]

Proof.

Use definitions, and do the math. See class notes.
11.3: Sorting Nuts and Bolts
Problem (Sorting Nuts and Bolts)

1. **Input:** Set n nuts + n bolts.
2. Every nut have a matching bolt.
3. All different sizes.
4. **Task:** Match nuts to bolts. (In sorted order).
5. **Restriction:** You can only compare a nut to a bolt.
6. **Q:** How to match the n nuts to the n bolts quickly?
Problem (Sorting Nuts and Bolts)

1. Input: Set n nuts + n bolts.
2. Every nut have a matching bolt.
3. All different sizes.
4. Task: Match nuts to bolts. (In sorted order).
5. Restriction: You can only compare a nut to a bolt.
6. Q: How to match the n nuts to the n bolts quickly?
Problem \textbf{(Sorting Nuts and Bolts)}

1. \textit{Input:} Set n nuts + n bolts.
2. Every nut have a matching bolt.
3. All different sizes.
4. \textit{Task:} Match nuts to bolts. (In sorted order).
5. Restriction: You can only compare a nut to a bolt.
6. Q: How to match the n nuts to the n bolts quickly?
Sorting Nuts & Bolts

Problem (**Sorting Nuts and Bolts**)

1. **Input:** Set n nuts + n bolts.
2. Every nut have a matching bolt.
3. All different sizes.
4. **Task:** Match nuts to bolts. (In sorted order).
5. **Restriction:** You can only compare a nut to a bolt.
6. **Q:** How to match the n nuts to the n bolts quickly?
Problem (Sorting Nuts and Bolts)

1. **Input:** Set \(n \) nuts + \(n \) bolts.
2. Every nut have a matching bolt.
3. All different sizes.
4. **Task:** Match nuts to bolts. (In sorted order).
5. **Restriction:** You can only compare a nut to a bolt.
6. **Q:** How to match the \(n \) nuts to the \(n \) bolts quickly?
Sorting nuts & bolts...

Algorithm

1. Naive algorithm...
2. ...better algorithm?
Sorting nuts & bolts...

Algorithm

1. Naive algorithm...
2. ...better algorithm?
Sorting nuts & bolts...

\textbf{MatchNutsAndBolts}(N: nuts, B: bolts)

Pick a random nut \(n_{\text{pivot}}\) from \(N\)
Find its matching bolt \(b_{\text{pivot}}\) in \(B\)
\(B_L \leftarrow \) All bolts in \(B\) smaller than \(n_{\text{pivot}}\)
\(N_L \leftarrow \) All nuts in \(N\) smaller than \(b_{\text{pivot}}\)
\(B_R \leftarrow \) All bolts in \(B\) larger than \(n_{\text{pivot}}\)
\(N_R \leftarrow \) All nuts in \(N\) larger than \(b_{\text{pivot}}\)
\text{MatchNutsAndBolts}(N_R,B_R)
\text{MatchNutsAndBolts}(N_L,B_L)

QuickSort style...
Sorting nuts & bolts...

MatchNutsAndBolts(N: nuts, B: bolts)

Pick a random nut n_{pivot} from N
Find its matching bolt b_{pivot} in B

$B_L \leftarrow$ All bolts in B smaller than n_{pivot}
$N_L \leftarrow$ All nuts in N smaller than b_{pivot}
$B_R \leftarrow$ All bolts in B larger than n_{pivot}
$N_R \leftarrow$ All nuts in N larger than b_{pivot}

MatchNutsAndBolts(N_R, B_R)
MatchNutsAndBolts(N_L, B_L)

QuickSort style...
11.3.1: Running time analysis
What is running time for randomized algorithms?

Definitions

Definition

$RT(U)$: random variable – **running time** of the algorithm on input U.

Definition

Expected running time $E[RT(U)]$ for input U.

Definition

Expected **running-time** of algorithm for input size n:

$$T(n) = \max_{U \text{ is an input of size } n} E[RT(U)].$$
What is running time for randomized algorithms?

Definitions

Definition

$RT(U)$: random variable – **running time** of the algorithm on input U.

Definition

Expected running time $E[RT(U)]$ for input U.

Definition

expected running-time of algorithm for input size n:

$$T(n) = \max_{U \text{ is an input of size } n} E[RT(U)].$$
What is running time for randomized algorithms?

Definitions

Definition

\(\mathcal{RT}(U) \): random variable – **running time** of the algorithm on input \(U \).

Definition

Expected running time \(\mathbb{E}[\mathcal{RT}(U)] \) for input \(U \).

Definition

expected **running-time** of algorithm for input size \(n \):

\[
T(n) = \max_{U \text{ is an input of size } n} \mathbb{E}[\mathcal{RT}(U)].
\]
What is running time for randomized algorithms?

More definitions

Definition

$\text{rank}(x)$: rank of element $x \in S =$ number of elements in S smaller or equal to x.
Theorem

Expected running time \textbf{MatchNutsAndBolts (QuickSort)} is
\[T(n) = O(n \log n). \text{ Worst case is } O(n^2). \]

Proof.

\[\Pr[\text{rank}(n_{\text{pivot}}) = k] = \frac{1}{n}. \text{ Thus,} \]

\[T(n) = \mathbb{E}_{k=\text{rank}(n_{\text{pivot}})} \left[O(n) + T(k - 1) + T(n - k) \right] \]
Expected running time MatchNutsAndBolts (QuickSort) is $T(n) = \Theta(n \log n)$. Worst case is $O(n^2)$.

Proof.

$$\Pr[\text{rank}(n_{pivot}) = k] = \frac{1}{n}. \ \text{Thus,}$$

$$T(n) = \mathbb{E}_{k=\text{rank}(n_{pivot})} \left[O(n) + T(k - 1) + T(n - k) \right]$$

$$= O(n) + \mathbb{E}_k[T(k - 1) + T(n - k)]$$
Theorem

Expected running time **MatchNutsAndBolts** (*QuickSort*) *is*

\[T(n) = O(n \log n). \text{ Worst case is } O(n^2). \]

Proof.

\[\Pr[\text{rank}(n_{pivot}) = k] = \frac{1}{n}. \text{ Thus,} \]

\[
T(n) = O(n) + \mathbb{E}_{k}
\left[
T(k - 1) + T(n - k)
\right]
\]
Theorem

Expected running time **MatchNutsAndBolts (QuickSort)** is

\[T(n) = O(n \log n). \text{ Worst case is } O(n^2). \]

Proof.

\[\Pr[\text{rank}(n_{pivot}) = k] = \frac{1}{n}. \text{ Thus,} \]

\[T(n) = O(n) + \sum_{k=1}^{n} \Pr[\text{Rank}(\text{Pivot}) = k] \]

\[= O(n) + \sum_{k=1}^{n} \Pr[\text{Rank}(\text{Pivot}) = k] \]

\[\times (T(k - 1) + T(n - k)) \]
Theorem

Expected running time \textbf{MatchNutsAndBolts (QuickSort)} is \(T(n) = O(n \log n)\). Worst case is \(O(n^2)\).

Proof.

\(\Pr[\text{rank}(n_{\text{pivot}}) = k] = \frac{1}{n} \). Thus,

\[
T(n) = O(n) + \sum_{k=1}^{n} \Pr[\text{Rank(Pivot)} = k] \times (T(k - 1) + T(n - k))
\]
Expected running time \textbf{MatchNutsAndBolts (QuickSort)} is
\[T(n) = O(n \log n). \] Worst case is \(O(n^2). \)

\textbf{Proof.}

\[\Pr[\text{rank}(n_{pivot}) = k] = \frac{1}{n}. \] Thus,
\[T(n) = O(n) + \sum_{k=1}^{n} \Pr[\text{Rank(Pivot)} = k] \]
\[\times (T(k - 1) + T(n - k)) \]
\[= O(n) + \sum_{k=1}^{n} \frac{1}{n} \cdot (T(k - 1) + T(n - k)), \]
Nuts and bolts running time

Theorem

Expected running time \(\text{MatchNutsAndBolts (QuickSort)} \) is

\[T(n) = O(n \log n). \text{ Worst case is } O(n^2). \]

Proof.

\[\Pr[\text{rank}(n_{pivot}) = k] = \frac{1}{n}. \text{ Thus,} \]

\[T(n) = O(n) + \sum_{k=1}^{n} \frac{1}{n} \cdot (T(k - 1) + T(n - k)), \]
Nuts and bolts running time

Theorem

Expected running time MatchNutsAndBolts (*QuickSort*) *is*

\[T(n) = O(n \log n). \text{ Worst case is } O(n^2). \]

Proof.

\[\Pr[\text{rank}(n_{pivot}) = k] = \frac{1}{n}. \text{ Thus,} \]

\[T(n) = O(n) + \sum_{k=1}^{n} \frac{1}{n} \cdot (T(k - 1) + T(n - k)), \]

Solution is \(T(n) = O(n \log n). \)
11.3.1.1: Alternative incorrect solution
Alternative intuitive analysis...

Which is not formally correct

1. **MatchNutsAndBolts** is **lucky** if \(\frac{n}{4} \leq \text{rank}(n_{pivot}) \leq \frac{3}{4}n \).

2. \(\Pr[\text{“lucky”}] = 1/2 \).

3. \(T(n) \leq O(n) + \Pr[\text{“lucky”}] \times (T(n/4) + T(3n/4)) + \Pr[\text{“unlucky”}] \times T(n) \).

4. \(T(n) = O(n) + \frac{1}{2} \times (T(\frac{n}{4}) + T(\frac{3}{4}n)) + \frac{1}{2}T(n) \).

5. Rewriting: \(T(n) = O(n) + T(n/4) + T((3/4)n) \).

6. ... solution is \(O(n \log n) \).
Alternative intuitive analysis...
Which is not formally correct

1. **MatchNutsAndBolts** is lucky if \(\frac{n}{4} \leq \text{rank}(n_{\text{pivot}}) \leq \frac{3}{4}n \).
2. \(\Pr[\text{“lucky”}] = 1/2 \).
3. \(T(n) \leq O(n) + \Pr[\text{“lucky”}] \times (T(n/4) + T(3n/4)) + \Pr[\text{“unlucky”}] \times T(n) \).
4. \(T(n) = O(n) + \frac{1}{2} \times (T(n/4) + T(3n/4)) + \frac{1}{2}T(n) \).
5. Rewriting: \(T(n) = O(n) + T(n/4) + T((3/4)n) \).
6. ... solution is \(O(n \log n) \).
Alternative intuitive analysis...

Which is not formally correct

1. **MatchNutsAndBolts** is **lucky** if \(\frac{n}{4} \leq \text{rank}(n_{pivot}) \leq \frac{3}{4}n \).

2. \(\Pr["lucky"] = 1/2. \)

3. \(T(n) \leq O(n) + \Pr["lucky"] \times (T(n/4) + T(3n/4)) + \Pr["unlucky"] \times T(n). \)

4. \(T(n) = O(n) + \frac{1}{2} \times (T(\frac{n}{4}) + T(\frac{3}{4}n)) + \frac{1}{2}T(n). \)

5. **Rewriting**: \(T(n) = O(n) + T(n/4) + T((3/4)n). \)

6. **... solution is** \(O(n \log n). \)
Alternative intuitive analysis...

Which is not formally correct

1. \textbf{MatchNutsAndBolts} is \textbf{lucky} if $\frac{n}{4} \leq \text{rank}(n_{\text{pivot}}) \leq \frac{3}{4}n$.

2. $\Pr[\text{“lucky”}] = 1/2$.

3. $T(n) \leq O(n) + \Pr[\text{“lucky”}] \times (T(n/4) + T(3n/4)) + \Pr[\text{“unlucky”}] \times T(n)$.

4. $T(n) = O(n) + \frac{1}{2} \times (T(\frac{n}{4}) + T(\frac{3}{4}n)) + \frac{1}{2}T(n)$.

5. Rewriting: $T(n) = O(n) + T(n/4) + T((3/4)n)$.

6. ... solution is $O(n \log n)$.
Alternative intuitive analysis...
Which is not formally correct

1. **MatchNutsAndBolts** is **lucky** if \(\frac{n}{4} \leq \text{rank}(n_{\text{pivot}}) \leq \frac{3}{4}n \).
2. \(\Pr[\text{“lucky”}] = \frac{1}{2} \).
3. \(T(n) \leq O(n) + \Pr[\text{“lucky”}] \ast (T(n/4) + T(3n/4)) + \Pr[\text{“unlucky”}] \ast T(n) \).
4. \(T(n) = O(n) + \frac{1}{2} \ast (T(\frac{n}{4}) + T(\frac{3}{4}n)) + \frac{1}{2}T(n) \).
5. **Rewriting**: \(T(n) = O(n) + T(n/4) + T((3/4)n) \).

6. ... solution is \(O(n \log n) \).
Alternative intuitive analysis...

Which is not formally correct

1. **MatchNutsAndBolts** is **lucky** if \(\frac{n}{4} \leq \text{rank}(n_{pivot}) \leq \frac{3}{4}n \).

2. \(\Pr[\text{“lucky”}] = 1/2. \)

3. \(T(n) \leq O(n) + \Pr[\text{“lucky”}] \times (T(n/4) + T(3n/4)) + \Pr[\text{“unlucky”}] \times T(n). \)

4. \(T(n) = O(n) + \frac{1}{2} \times (T(\frac{n}{4}) + T(\frac{3}{4}n)) + \frac{1}{2}T(n). \)

5. Rewriting: \(T(n) = O(n) + T(n/4) + T((3/4)n). \)

6. ... solution is \(O(n \log n). \)
11.3.2: What are randomized algorithms?
Worst case vs. average case

Expected running time of a randomized algorithm is

\[T(n) = \max_{U \text{ is an input of size } n} \mathbb{E}[\mathcal{R} \mathcal{T}(U)], \]

Worst case running time of deterministic algorithm:

\[T(n) = \max_{U \text{ is an input of size } n} \mathcal{R} \mathcal{T}(U), \]
High Probability running time...

Definition

Running time Alg is $O(f(n))$ with **high probability** if

$$\Pr\left[\mathcal{RT}(\text{Alg}(n)) \geq c \cdot f(n) \right] = o(1).$$

$$\Rightarrow \Pr\left[\mathcal{RT}(\text{Alg}) > c \cdot f(n) \right] \to 0 \text{ as } n \to \infty.$$

Usually use weaker def:

$$\Pr\left[\mathcal{RT}(\text{Alg}(n)) \geq c \cdot f(n) \right] \leq \frac{1}{n^d},$$

Technical reasons... also assume that $\mathbb{E}[\mathcal{RT}(\text{Alg}(n))] = O(f(n))$.

Sariel (UIUC) New CS473 Fall 2015 22 / 30
Definition

Running time Alg is $O(f(n))$ with high probability if

$$\Pr\left[\mathcal{RT}(\text{Alg}(n)) \geq c \cdot f(n)\right] = o(1).$$

$$\implies \Pr\left[\mathcal{RT}(\text{Alg}) > c \cdot f(n)\right] \to 0 \text{ as } n \to \infty.$$

Usually use weaker def:

$$\Pr\left[\mathcal{RT}(\text{Alg}(n)) \geq c \cdot f(n)\right] \leq \frac{1}{n^d},$$

Technical reasons... also assume that $\mathbb{E}[\mathcal{RT}(\text{Alg}(n))] = O(f(n)).$
Definition

Running time Alg is $O(f(n))$ with high probability if

$$\Pr \left[\mathcal{RT}(\text{Alg}(n)) \geq c \cdot f(n) \right] = o(1).$$

$$\Rightarrow \Pr \left[\mathcal{RT}(\text{Alg}) > c \ast f(n) \right] \to 0 \text{ as } n \to \infty.$$

Usually use weaker def:

$$\Pr \left[\mathcal{RT}(\text{Alg}(n)) \geq c \cdot f(n) \right] \leq \frac{1}{n^d},$$

Technical reasons... also assume that $\mathbb{E}[\mathcal{RT}(\text{Alg}(n))] = O(f(n))$.
High Probability running time...

Definition

Running time \(\text{Alg} \) is \(O(f(n)) \) with **high probability** if

\[
\Pr \left[\mathcal{R}_T(\text{Alg}(n)) \geq c \cdot f(n) \right] = o(1).
\]

\[
\Rightarrow \quad \Pr \left[\mathcal{R}_T(\text{Alg}) > c \cdot f(n) \right] \to 0 \text{ as } n \to \infty.
\]

Usually use weaker def:

\[
\Pr \left[\mathcal{R}_T(\text{Alg}(n)) \geq c \cdot f(n) \right] \leq \frac{1}{n^d},
\]

Technical reasons... also assume that \(\mathbb{E}[\mathcal{R}_T(\text{Alg}(n))] = O(f(n)) \).
11.4: Slick analysis of QuickSort
A Slick Analysis of QuickSort

Let \(Q(A) \) be number of comparisons done on input array \(A \):

1. For \(1 \leq i < j < n \) let \(R_{ij} \) be the event that rank \(i \) element is compared with rank \(j \) element.

2. \(X_{ij} \): indicator random variable for \(R_{ij} \).
 \(X_{ij} = 1 \iff \) rank \(i \) element compared with rank \(j \) element, otherwise \(0 \).

\[
Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}
\]

and hence by linearity of expectation,

\[
E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].
\]
A Slick Analysis of **QuickSort**

Let $Q(A)$ be number of comparisons done on input array A:

1. For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.

2. X_{ij}: **indicator random variable** for R_{ij}. $X_{ij} = 1 \iff$ rank i element compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$$

and hence by linearity of expectation,

$$E\left[Q(A) \right] = \sum_{1 \leq i < j \leq n} E\left[X_{ij} \right] = \sum_{1 \leq i < j \leq n} Pr\left[R_{ij} \right].$$
A Slick Analysis of QuickSort

\(R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.} \)

Question: What is \(\Pr[R_{ij}] \)?

7 5 9 1 3 4 8 6
A Slick Analysis of QuickSort

\(R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.} \)

Question: What is \(\Pr[R_{ij}] \)?

With ranks: 6 4 8 1 2 3 7 5
A Slick Analysis of **QuickSort**

\[R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.} \]

Question: What is \(\Pr[R_{ij}] \)?

<table>
<thead>
<tr>
<th>7</th>
<th>5</th>
<th>9</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>6</th>
</tr>
</thead>
</table>

With ranks: 6 4 8 1 2 3 7 5

As such, probability of comparing 5 to 8 is \(\Pr[R_{4,7}] \).
$R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $\Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare 5 to 8 is moved to subproblem.
A Slick Analysis of **QuickSort**

$R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

1. If pivot too small (say 3 [rank 2]). Partition and call recursively:

 \[
 \begin{array}{cccccccc}
 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
 \end{array}
 \Rightarrow
 \begin{array}{cccccccc}
 1 & 3 & 7 & 5 & 9 & 4 & 8 & 6 \\
 \end{array}
 \]

 Decision if to compare 5 to 8 is moved to subproblem.

2. If pivot too large (say 9 [rank 8]):

 \[
 \begin{array}{cccccccc}
 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
 \end{array}
 \Rightarrow
 \begin{array}{ccccccccc}
 7 & 5 & 1 & 3 & 4 & 8 & 6 & 9 \\
 \end{array}
 \]

 Decision if to compare 5 to 8 moved to subproblem.
A Slick Analysis of QuickSort

Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

If pivot is 5 (rank 4). Bingo!

1 3 4 5 7 9 8 6
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

1. If pivot is 5 (rank 4). Bingo!

2. If pivot is 8 (rank 7). Bingo!
A Slick Analysis of **QuickSort**

Question: What is $\Pr[R_{i,j}]$?

1. **If pivot is 5** (rank 4). Bingo!

 ![Diagram 1](image1.png)

 As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

2. **If pivot is 8** (rank 7). Bingo!

 ![Diagram 2](image2.png)

3. **If pivot in between the two numbers** (say 6 [rank 5]):

 ![Diagram 3](image3.png)

 5 and 8 will never be compared to each other.
A Slick Analysis of **QuickSort**

Question: What is $\Pr[R_{i,j}]$?

Conclusion:

$R_{i,j}$ happens if and only if:

- ith or jth ranked element is the first pivot out of ith to jth ranked elements.

How to analyze this?

Thinking acrobatics!

1. Assign every element in the array a random priority (say in $[0, 1]$).
2. Choose pivot to be the element with lowest priority in subproblem.
3. Equivalent to picking pivot uniformly at random (as **QuickSort** do).
A Slick Analysis of **QuickSort**

Question: What is \(\Pr[R_{i,j}] \)?

How to analyze this?

Thinking acrobatics!

1. Assign every element in the array a random priority (say in \([0, 1]\)).
2. Choose pivot to be the element with lowest priority in subproblem.

\[R_{i,j} \text{ happens if either } i \text{ or } j \text{ have lowest priority out of elements rank } i \text{ to } j, \]

There are \(k = j - i + 1 \) relevant elements.

\[
\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}.
\]
A Slick Analysis of **QuickSort**

Question: What is $Pr[R_{i,j}]$?

How to analyze this?

Thinking acrobatics!

1. Assign every element in the array a random priority (say in $[0, 1]$).
2. Choose pivot to be the element with lowest priority in subproblem.

$\implies R_{i,j}$ happens if either i or j have lowest priority out of elements rank i to j,

There are $k = j - i + 1$ relevant elements.

$$Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}.$$
Question: What is $\Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order.
Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...
A Slick Analysis of \textbf{QuickSort}

\textbf{Question:} What is $\Pr[R_{ij}]$?

\textbf{Lemma}

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

\textbf{Proof.}

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

\textbf{Observation:} If pivot is chosen outside S then all of S either in left array or right array.

\textbf{Observation:} a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

\textbf{Observation:} a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof.
Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...
Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

Proof.

Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \). Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

Observation: \(a_i \) is compared with \(a_j \) if and only if either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.

Observation: Given that pivot is chosen from \(S \) the probability that it is \(a_i \) or \(a_j \) is exactly \(2/|S| = 2/(j-i+1) \) since the pivot is chosen uniformly at random from the array.
A Slick Analysis of QuickSort

Continued...

\[
\mathbb{E}[Q(A)] = \sum_{1 \leq i < j \leq n} \mathbb{E}[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].
\]

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

\[
\mathbb{E}[Q(A)] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}
\]
Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[
\mathbb{E}[Q(A)] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}
\]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[\mathbb{E}[Q(A)] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[
\mathbf{E} \left[Q(A) \right] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}
\]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \]
A Slick Analysis of QuickSort

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[\mathbb{E}[Q(A)] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \]
Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j - i + 1}. \]

\[
E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j} \frac{1}{j - i + 1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}
\]
A Slick Analysis of **QuickSort**

Continued...

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j - i + 1}.
\]

\[
\mathbb{E}[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{j<i} \frac{1}{j - i + 1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}
\]

\[
\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i < n} H_n
\]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \]

\[\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i < n} H_n \]

\[\leq 2nH_n = O(n \log n) \]
11.5: Quick Select
11.6: Randomized Selection
Randomized Quick Selection

Input Unsorted array A of n integers, an integer j.
Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection
1. Pick a pivot element *uniformly at random* from the array.
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
3. Return pivot if rank of pivot is j.
4. Otherwise recurse on one of the arrays depending on j and their sizes.
Algorithm for Randomized Selection

Assume for simplicity that \(A \) has distinct elements.

\textbf{QuickSelect}(\(A, j \)):
Pick pivot \(x \) uniformly at random from \(A \)
Partition \(A \) into \(A_{\text{less}} \), \(x \), and \(A_{\text{greater}} \) using \(x \) as pivot
if \(|A_{\text{less}}| = j - 1 \) then
return \(x \)
if \(|A_{\text{less}}| \geq j \) then
return \textbf{QuickSelect}(\(A_{\text{less}}, j \))
else
return \textbf{QuickSelect}(\(A_{\text{greater}}, j - |A_{\text{less}}| - 1 \))
QuickSelect analysis

1. S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.

2. S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$

3. $Y_1 = \text{number of recursive calls till first successful iteration.}$ Clearly, total work till this happens is $O(Y_1 n)$.

4. $n_i = \text{size of the subproblem immediately after the } (i - 1)\text{th successful iteration.}$

5. $Y_i = \text{number of recursive calls after the } (i - 1)\text{th successful call, till the } i\text{th successful iteration.}$

6. Running time is $O(\sum_i n_i Y_i)$.
QuickSelect analysis

Example

\(S_i = \) subarray used in \(i \)th recursive call

\(|S_i| = \) size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
<th>(S_7)</th>
<th>(S_8)</th>
<th>(S_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ’</td>
<td>(Y_1 = 2)</td>
<td>(Y_2 = 4)</td>
<td>(Y_3 = 2)</td>
<td>(Y_4 = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_i =)</td>
<td>(n_1 = 100)</td>
<td>(n_2 = 60)</td>
<td>(n_3 = 25)</td>
<td>(n_4 = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All the subproblems after \((i - 1)\)th successful iteration till \(i\)th successful iteration have size \(\leq n_i \).

2. Total work: \(O(\sum n_i Y_i) \).
QuickSelect analysis

Example

$S_i =$ subarray used in ith recursive call

$|S_i| =$ size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1 = 2$</td>
<td></td>
<td>$Y_2 = 4$</td>
<td></td>
<td>$Y_3 = 2$</td>
<td></td>
<td>$Y_4 = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td>$n_1 = 100$</td>
<td></td>
<td>$n_2 = 60$</td>
<td></td>
<td>$n_3 = 25$</td>
<td></td>
<td>$n_4 = 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All the subproblems after $(i - 1)$th successful iteration till ith successful iteration have size $\leq n_i$.

2. Total work: $O(\sum_i n_i Y_i)$.
QuickSelect analysis

Total work: \(O(\sum_i n_i Y_i) \).

We have:

1. \(n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n \).

2. \(Y_i \) is a random variable with geometric distribution
 Probability of \(Y_i = k \) is \(1/2^i \).

3. \(\mathbb{E}[Y_i] = 2 \).

As such, expected work is proportional to

\[
\mathbb{E}\left[\sum_i n_i Y_i \right] = \sum_i \mathbb{E}[n_i Y_i] \leq \sum_i \mathbb{E}\left[(3/4)^{i-1} n Y_i \right] \\
= n \sum_i (3/4)^{i-1} \mathbb{E}[Y_i] = n \sum_{i=1} (3/4)^{i-1}2 \leq 8n.
\]
The expected running time of QuickSelect is $O(n)$.

Theorem

*The expected running time of QuickSelect is $O(n)$.***