Probability - quick review
Definitions

Definition (Informal)
Random variable: a function from probability space to \(\mathbb{R} \).
Associates value \(\forall \) atomic events in probability space.

Definition
The conditional probability of \(X \) given \(Y \) is
\[
Pr\left[X = x \mid Y = y \right] = \frac{Pr\left[(X = x) \cap (Y = y) \right]}{Pr\left[Y = y \right]}.
\]
Equivalent to
\[
Pr\left[(X = x) \cap (Y = y) \right] = Pr\left[X = x \mid Y = y \right] \cdot Pr\left[Y = y \right].
\]
Linearity of expectations

Lemma (Linearity of expectation.)
\[\forall \text{ random variables } X \text{ and } Y : \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]. \]

Proof.
Use definitions, do the math. See notes for details.

Probability - quick review

Conditional Expectation

Definition
\[X, Y : \text{ random variables. The conditional expectation of } X \text{ given } Y \text{ (i.e., you know } Y = y): \]
\[\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid Y = y] = \sum_x x \times \Pr[X = x \mid Y = y]. \]

\[\mathbb{E}[X] \text{ is a number.} \]
\[f(y) = \mathbb{E}[X \mid Y = y] \text{ is a function.} \]

Conditional Expectation

Lemma
\[\forall X, Y \text{ (not necessarily independent):} \]
\[\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]. \]
\[\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}_y \mathbb{E}[X \mid Y = y] \]

Proof.
Use definitions, and do the math. See class notes.

Sorting Nuts & Bolts

Problem (Sorting Nuts and Bolts)

1. Input: Set \(n \) nuts + \(n \) bolts.
2. Every nut has a matching bolt.
3. All different sizes.
4. Task: Match nuts to bolts.
5. Restriction: You can only compare a nut to a bolt.
6. Q: How to match the \(n \) nuts to the \(n \) bolts quickly?
Matching nuts and bolts...

Algorithm

1. Naive algorithm...
2. ...better algorithm?

```plaintext
MatchNutsAndBolts(N: nuts, B: bolts)
    Pick a random nut \( n_{\text{pivot}} \) from \( N \)
    Find its matching bolt \( b_{\text{pivot}} \) in \( B \)
    \( B_L \leftarrow \) All bolts in \( B \) smaller than \( n_{\text{pivot}} \)
    \( N_L \leftarrow \) All nuts in \( N \) smaller than \( b_{\text{pivot}} \)
    \( B_R \leftarrow \) All bolts in \( B \) larger than \( n_{\text{pivot}} \)
    \( N_R \leftarrow \) All nuts in \( N \) larger than \( b_{\text{pivot}} \)
    MatchNutsAndBolts(\( N_R \), \( B_R \))
    MatchNutsAndBolts(\( N_L \), \( B_L \))

QuickSort style...
```

What is running time for randomized algorithms?

Definitions

- **Definition**
 \(\mathcal{R}(U) \): random variable – **running time** of the algorithm on input \(U \).

- **Definition**
 Expected running time \(\mathbb{E}[\mathcal{R}(U)] \) for input \(U \).

- **Definition**
 expected running-time of algorithm for input size \(n \):
 \[
 T(n) = \max_{U \text{ is an input of size } n} \mathbb{E}[\mathcal{R}(U)].
 \]

Definition

- **rank** \(x \): **rank** of element \(x \in S = \) number of elements in \(S \) smaller or equal to \(x \).
Nuts and bolts running time

Theorem
Expected running time \textit{MatchNutsAndBolts} (QuickSort) is
\[T(n) = O(n \log n) \]. Worst case is \(O(n^2) \).

Proof.
\[\Pr[\text{rank}(n_{\text{pivot}}) = k] = \frac{1}{n}. \]
Thus,
\[T(n) = \mathbb{E}_{k=\text{rank}(n_{\text{pivot}})} \left[O(n) + T(k - 1) + T(n - k) \right] \]
\[= O(n) + \mathbb{E}_{k} [T(k - 1) + T(n - k)] \]
\[= O(n) + \sum_{k=1}^{n} \Pr[\text{Rank(Pivot)} = k] \]
\[\times (T(k - 1) + T(n - k)) \]
\[= O(n) + \sum_{k=1}^{n} \frac{1}{n} \times (T(k - 1) + T(n - k)), \]
Solution is \(T(n) = O(n \log n) \).

Worst case vs. average case

Expected running time of a randomized algorithm is
\[T(n) = \max_{U \text{ is an input of size } n} \mathbb{E}[RT(U)], \]
Worst case running time of deterministic algorithm:
\[T(n) = \max_{U \text{ is an input of size } n} RT(U), \]

Alternative intuitive analysis...

Which is not formally correct

1. \textit{MatchNutsAndBolts} is \textit{lucky} if \(\frac{n}{4} \leq \text{rank}(n_{\text{pivot}}) \leq \frac{3}{4} n \).
2. \(\Pr[\text{"lucky"}] = 1/2 \).
3. \(T(n) \leq O(n) + \Pr[\text{"lucky"}] \times (T(n/4) + T(3n/4)) + \Pr[\text{"unlucky"}] \times T(n). \)
4. \(T(n) = O(n) + \frac{1}{2} \times (T(\frac{n}{4}) + T(\frac{3n}{4})) + \frac{1}{2} T(n). \)
5. Rewriting: \(T(n) = O(n) + T(n/4) + T((3/4)n). \)
6. ... solution is \(O(n \log n) \).

High Probability running time...

Definition
Running time \(\text{Alg} \) is \(O(f(n)) \) with \textit{high probability} if
\[\Pr[\text{RT(Alg(n))} \geq c \cdot f(n)] = o(1). \]
\[\implies \Pr[\text{RT(Alg)} > c \cdot f(n)] \to 0 \text{ as } n \to \infty. \]
Usually use weaker def:
\[\Pr[\text{RT(Alg(n))} \geq c \cdot f(n)] \leq \frac{1}{n^d}, \]
Technical reasons... also assume that
\[\mathbb{E}[\text{RT(Alg(n))}] = O(f(n)). \]
A Slick Analysis of \textbf{QuickSort}

Let $Q(A)$ be number of comparisons done on input array A:

1. For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.

2. X_{ij}: indicator random variable for R_{ij}. $X_{ij} = 1 \iff$ rank i element compared with rank j element, otherwise 0.

3. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$ and hence by linearity of expectation,

$$E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].$$

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

1. If pivot too small (say 3 [rank 2]). Partition and call recursively:

 \[
 \begin{array}{cccccccc}
 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
 6 & 4 & 8 & 1 & 2 & 3 & 7 & 5 \\
 \end{array}
 \]

 Decision if to compare 5 to 8 is moved to subproblem.

2. If pivot too large (say 9 [rank 8]):

 \[
 \begin{array}{cccccccc}
 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
 \end{array}
 \]

 Decision if to compare 5 to 8 moved to subproblem.

Conclusion:

R_{ij} happens if and only if:

- ith or jth ranked element is the first pivot out of ith to jth ranked elements.

How to analyze this?

Thinking acrobatics!

1. Assign every element in the array a random priority (say in $[0, 1]$).
2. Choose pivot to be the element with lowest priority in subproblem.
3. Equivalent to picking pivot uniformly at random (as \textbf{QuickSort} do).
A Slick Analysis of QuickSort

Question: What is \(\Pr[R_{ij}] \)?

How to analyze this?

Thinking acrobatics!
1. Assign every element in the array a random priority (say in \([0, 1])
2. Choose pivot to be the element with lowest priority in subproblem.

\[R_{ij} \text{ happens if either } i \text{ or } j \text{ have lowest priority out of elements rank } i \text{ to } j. \]

There are \(k = j - i + 1 \) relevant elements.

\[\Pr[R_{ij}] = \frac{2}{k} = \frac{2}{j - i + 1}. \]

Lemma \(\Pr[R_{ij}] = \frac{2}{j - i + 1}. \)

Proof.
Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be elements of \(A \) in sorted order. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

Observation: \(a_i \) is compared with \(a_j \) if and only if either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation...

\[\sum_{1 \leq i < j \leq n} \Pr[R_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \leq 2 \sum_{i=1}^{n} (H_n - H_{i+1} - 1) \leq 2 \sum_{1 \leq i < n} H_n \]

\[\leq 2nH_n = O(n \log n) \]
Randomized Quick Selection

Input Unsorted array A of n integers, an integer j.
Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection

1. Pick a pivot element uniformly at random from the array.
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
3. Return pivot if rank of pivot is j.
4. Otherwise recurse on one of the arrays depending on j and their sizes.

Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect(A, j):
Pick pivot x uniformly at random from A
Partition A into A_{less}, x, and A_{greater} using x as pivot
if $(|A_{\text{less}}| = j - 1)$ then
 return x
if $(|A_{\text{less}}| \geq j)$ then
 return QuickSelect(A_{less}, j)
else
 return QuickSelect(A_{greater}, $j - |A_{\text{less}}| - 1$)

QuickSelect analysis

1. S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm.
 Here $|S_1| = n$.
2. S_i would be successful if $|S_i| \leq (3/4)|S_{i-1}|$
3. $Y_1 =$ number of recursive calls till first successful iteration.
 Clearly, total work till this happens is $O(Y_1 n)$.
4. $n_i =$ size of the subproblem immediately after the $(i - 1)$th successful iteration.
5. $Y_i =$ number of recursive calls after the $(i - 1)$th successful call, till the ith successful iteration.
6. Running time is $O(\sum_i n_i Y_i)$.

QuickSelect analysis

Example

$S_i =$ subarray used in ith recursive call
$|S_i| =$ size of this subarray
Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1 = 2$</td>
<td>$Y_2 = 4$</td>
<td>$Y_3 = 2$</td>
<td>$Y_4 = 1$</td>
<td>$n_1 = n_1 = 100$</td>
<td>$n_2 = 60$</td>
<td>$n_3 = 25$</td>
<td>$n_4 = 2$</td>
<td></td>
</tr>
</tbody>
</table>

1. All the subproblems after $(i - 1)$th successful iteration till ith successful iteration have size $\leq n_i$.
2. Total work: $O(\sum_i n_i Y_i)$.
QuickSelect analysis

Total work: $O(\sum_i n_i Y_i)$.

We have:

1. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1} n$.
2. Y_i is a random variable with geometric distribution
 Probability of $Y_i = k$ is $1/2^i$.

As such, expected work is proportional to

$$ E\left[\sum_i n_i Y_i \right] = \sum_i E[n_i Y_i] \leq \sum_i E[(3/4)^{i-1} n Y_i] $$

$$ = n \sum_i (3/4)^{i-1} E[Y_i] = n \sum_{i=1} E[Y_i] \leq 8n. $$