NP-Completeness

Definition
Nondeterministic Polynomial Time (denoted by \(\text{NP} \)) is the class of all problems that have efficient certifiers (for YES instances).

Recall...
NP-Complete Problems

Definition
A problem \(X \) is said to be \(\text{NP-Complete} \) if
1. \(X \in \text{NP} \), and
2. (Hardness) For any \(Y \in \text{NP} \), \(Y \leq_p X \).

Recall...

Definition
\(\text{co-NP} \): class of all decision problems \(X \) s.t. \(\overline{X} \in \text{NP} \).
Examples: \(\text{UnSAT} \), \(\text{No-Hamiltonian-Cycle} \), \(\text{No-3-Colorable} \).
Recall...

1. **NP**: languages that have polynomial time certifiers/verifiers.
2. A language \(L \) is **NP-Complete** ⇐⇒
 - \(L \) is in **NP**
 - for every \(L' \) in **NP**, \(L' \leq_p L \)
3. \(L \) is **NP-Hard** if for every \(L' \) in **NP**, \(L' \leq_p L \).
4. Cook-Level theorem...

Theorem (Cook-Levin)

Circuit-SAT is **NP-Complete**.

Circuits

Definition

A circuit is a directed acyclic graph with

1. Input vertices (without incoming edges) labelled with \(0, 1 \) or a distinct variable.
2. Every other vertex is labelled \(\lor, \land \) or \(\lnot \).
3. Single node output vertex with no outgoing edges.

Cook-Levin Theorem

Definition (Circuit Satisfaction (**CSAT**).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value \(1 \)?

Theorem (Cook-Levin)

CSAT is **NP-Complete**.

Need to show

1. **CSAT** is in **NP**.
2. every **NP** problem \(X \) reduces to **CSAT**.

CSAT: Circuit Satisfaction

Claim

CSAT is in **NP**.

1. **Certificate**: Assignment to input variables.
2. **Certifier**: Evaluate the value of each gate in a topological sort of **DAG** and check the output gate value.
CSAT is NP-hard: Idea

1. Need to show that every NP problem X reduces to CSAT.
2. What does it mean that $X \in \text{NP}$?
3. $X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 3.1 If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
 3.2 If s is a NO instance ($s \notin X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
 3.3 $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).

Reducing X to CSAT

1. NP problem: a three tuple $\langle p, q, C \rangle$.
 - C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
2. Problem X: Given string s, is $s \in X$?
3. Equivalent:
 - \exists proof t of length $p(|s|)$ & $C(s, t)$ returns YES.
 - ...$C(s, t)$ runs in $q(|s|)$ time.
4. Reduce from X to CSAT...
 Need an algorithm alg that:
 4.1 takes s (and $\langle p, q, C \rangle$).
 - Creates circuit G in poly time in $|s|$.
 - $\langle p, q, C \rangle$ is fixed so $|\langle p, q, C \rangle| = O(1)$.
 4.2 G is satisfiable
 $\iff \exists$ proof t s.t. $C(s, t)$ returns YES.

Reducing X to CSAT

1. Q: How do we reduce X to CSAT?
2. Need algorithm alg that:
 2.1 Input: s (and $\langle p, q, C \rangle$).
 2.2 creates circuit G in poly-time in $|s|$ ($\langle p, q, C \rangle$ fixed).
 2.3 G satisfiable $\iff \exists$ proof t: $C(s, t)$ returns YES.
3. Simple but Big Idea: Programs are the same as Circuits!
 3.1 Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 3.2 Known: $|t| \leq p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3.3 Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Example: **Independent Set**

1. **Formal definition:**

 Independent Set

 Instance: $G = (V, E)$

 Question: Does $G = (V, E)$ have an Independent Set of size $\geq k$?

2. **Certificate:** Set $S \subseteq V$.

3. **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

4. **Q:** Formally, why is **Independent Set** in **NP**?

Certifier for Independent Set

Certifier $C(s, t)$ for **Independent Set**:

- if $(t_1 + t_2 + \ldots + t_n < k)$ then return NO
- else
 - for each (i, j) do
 - if $(t_i \land t_j \land y_{i,j})$ then return NO
 - return YES

Example: **Independent Set**

Formally why is **Independent Set** in **NP**?

1. Input is a “binary” vector:

 $\langle n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k \rangle$

 encodes $\langle G, k \rangle$.

 1.1 n is number of vertices in G

 1.2 $y_{i,j}$ is a bit which is 1 if edge (i, j) is in G and 0 otherwise (adjacency matrix representation)

 1.3 k: size of independent set.

2. **Certificate:** $t = t_1 t_2 \ldots t_n$.

 Interpretation: $t_i = 1$ if vertex i is in independent set.

 ... 0 otherwise.

Example: **Independent Set**

Certifier circuit for Independent Set of size at least 2 for graph with 3 vertices

Graph G with $k = 2$

- At least two vertices?
- Both ends of an edge?
Programs, Turing Machines and Circuits

1. **alg:** “program” that takes $f(|s|)$ steps on input string s.
2. **Questions:** What computer is used? What does *step* mean?
3. “Real” computers difficult to reason with mathematically:
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - assumption that pointer to code fits in one word
4. Turing Machines:
 - simpler model of computation to reason with
 - can simulate real computers with polynomial slow down
 - all moves are *local* (head moves only one cell)

Certifiers that at TMs

1. Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M
2. **Problem:** Given M, input s, p, q decide if:
 - \exists proof t of length $\leq p(|s|)$
 - M executed on the input s, t halts in $q(|s|)$ time and returns YES.
3. **ConvCSAT** reduces above problem to **CSAT**:
 - computes $p(|s|)$ and $q(|s|)$.
 - As such, M:
 - uses at most $q(|s|)$ memory/tape cells.
 - can run for at most $q(|s|)$ time.
 - Simulates evolution of the states of M and memory over time, using a big circuit.

Simulation of Computation via Circuit

1. M state at time ℓ: A string $x^\ell = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.
2. Time 0: State of $M = \text{input string } s$, a guess t of $p(|s|)$ “unknowns”, and rest $q(|s|)$ blank symbols.
3. Time $q(|s|)$? Does M stops in q_{accept} with blank tape.
4. Build circuit C_ℓ: Evaluates to YES \iff transition of M from time ℓ to time $\ell + 1$ valid. (Circuit of size $O(q(|s|))$).
5. $C = C_0 \land C_1 \land \cdots \land C_q(|s|)$.
 - Polynomial size!
6. Output of C true \iff sequence of states of M is legal and leads to an accept state.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:
1. Use TMs as the code for certifier for simplicity
2. Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
SAT is NP-Complete

1. We have seen that SAT ∈ NP
2. To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of CSAT (we label each node):

```
1, a ?, b ?, c 0, d ?, e
```

Converting a circuit into a CNF formula

Label the nodes

(A) Input circuit

(B) Label the nodes.

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

\[
x_k \quad \text{(Demand a sat' assignment!)}
\]

\[
x_k = x_i \land x_k
\]

\[
x_j = x_g \land x_h
\]

\[
x_i = \neg x_f
\]

\[
x_h = x_d \lor x_e
\]

\[
x_g = x_b \lor x_c
\]

\[
x_f = x_a \land x_b
\]

\[
x_d = 0
\]

\[
x_a = 1
\]
Converting a circuit into a CNF formula

Convert each sub-formula to an equivalent CNF formula.

<table>
<thead>
<tr>
<th>x_k</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_k = x_j \land x_j$</td>
<td>$\neg x_k \lor \neg x_j \lor x_j \lor x_j \lor x_k \lor \neg x_j \lor \neg x_j$</td>
</tr>
<tr>
<td>$x_j = x_g \land x_h$</td>
<td>$\neg x_j \lor x_g \lor x_j \lor x_h \lor x_h \lor \neg x_g \lor \neg x_h$</td>
</tr>
<tr>
<td>$x_i = \neg x_f$</td>
<td>$(x_i \lor \neg x_f) \lor (\neg x_i \lor \neg x_f)$</td>
</tr>
<tr>
<td>$x_h = x_d \lor x_e$</td>
<td>$(x_h \lor \neg x_d) \land (\neg x_h \lor x_d \lor x_e)$</td>
</tr>
<tr>
<td>$x_g = x_b \lor x_c$</td>
<td>$(x_g \lor \neg x_b) \land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c)$</td>
</tr>
<tr>
<td>$x_f = x_a \land x_b$</td>
<td>$(\neg x_f \lor \neg x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$</td>
</tr>
<tr>
<td>$x_d = 0$</td>
<td>$\neg x_d$</td>
</tr>
<tr>
<td>$x_a = 1$</td>
<td>x_a</td>
</tr>
</tbody>
</table>

We got a CNF formula that is satisfiable \iff the original circuit is satisfiable.

Reduction: CSAT ≤ P SAT

1. For each gate (vertex) v in the circuit, create a variable x_v.
2. **Case \neg:** v is labeled \neg and has one incoming edge from u (so $x_u = \neg x_u$). In SAT formula generate, add clauses $(x_u \lor x_v), (\neg x_u \lor \neg x_v)$. Observe that

 $x_v = \neg x_u$ is true $\iff (x_u \lor x_v)$ both true.

Reduction: CSAT ≤ P SAT

Continued...

1. **Case \lor:** So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u), (x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

 $(x_v = x_u \lor x_w)$ is true $\iff (x_v \lor \neg x_u), (x_v \lor \neg x_w), (\neg x_v \lor x_u \lor x_w)$ all true.
Reduction: CSAT \leq_P SAT

Continued...

1. Case \land: So $x_v = x_u \land x_w$. In SAT formula generated, add clauses $(\neg x_v \lor x_u), (\neg x_v \lor x_w)$, and $(x_v \lor \neg x_u \lor \neg x_w)$. Again observe that

$$x_v = x_u \land x_w \text{ is true } \iff (\neg x_v \lor x_u), \quad (\neg x_v \lor x_w), \quad \text{all true.}$$

$$x_v \lor \neg x_u \lor \neg x_w$$

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

0.1 Find values of all gates in C under a

0.2 Give value of gate v to variable x_v; call this assignment a'

0.3 a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

0.1 Let a' be the restriction of a to only the input variables

0.2 Value of gate v under a' is the same as value of x_v in a

0.3 Thus, a' satisfies C

Theorem

SAT is NP-Complete.

Reduction: CSAT \leq_P SAT

Continued...

1. If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v. If $x_v = 0$ add clause $\neg x_v$

2. Add the clause x_v where v is the variable for the output gate

Proving that a problem X is NP-Complete

1. To prove X is NP-Complete, show

1.1 Show X is in NP.

1.1.1 certificate/proof of polynomial size in input

1.1.2 polynomial time certifier $C(s, t)$

1.2 Reduction from a known NP-Complete problem such as CSAT or SAT to X

2. SAT $\leq_p X$ implies that every NP problem $Y \leq_p X$. Why?

Transitivity of reductions:

3. $Y \leq_p SAT$ and SAT $\leq_p X$ and hence $Y \leq_p X$.

NP-Completeness via Reductions

1. What we currently know:
 1.1 CSAT is NP-Complete.
 1.2 CSAT \leq_p SAT and SAT is in NP and hence SAT is NP-Complete.
 1.3 SAT \leq_p 3SAT and hence 3SAT is NP-Complete.
 1.4 3SAT \leq_p Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 1.5 Vertex Cover is NP-Complete.
 1.6 Clique is NP-Complete.

2. Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

3. A surprisingly frequent phenomenon!

Next...

Prove
- Hamiltonian Cycle Problem is NP-Complete.
- 3-Coloring is NP-Complete.
- Subset Sum.

Part I

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input
Given a directed graph $G = (V, E)$ with n vertices

Goal
Does G have a Hamiltonian cycle?
- A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once
Directed Hamiltonian Cycle is \textbf{NP-Complete}

- Directed Hamiltonian Cycle is in \textbf{NP}
 - \textbf{Certificate}: Sequence of vertices
 - \textbf{Certifier}: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- \textbf{Hardness}: Will prove...
 \(3\text{SAT} \leq \text{p} \text{ Directed Hamiltonian Cycle.}\)

\begin{itemize}
\item Reduction: First Ideas
 \begin{itemize}
 \item Viewing SAT: Assign values to \(n\) variables, and each clause has 3 ways in which it can be satisfied.
 \item Construct graph with \(2^n\) Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
 \item Then add more graph structure to encode constraints on assignments imposed by the clauses.
 \end{itemize}
\end{itemize}

\begin{itemize}
\item Reduction
 \begin{enumerate}
 \item \textbf{3SAT} formula \(\varphi\) create a graph \(G_\varphi\) such that
 \begin{itemize}
 \item \(G_\varphi\) has a Hamiltonian cycle \iff \(\varphi\) is satisfiable
 \item \(G_\varphi\) should be constructible from \(\varphi\) by a polynomial time algorithm \(A\)
 \end{itemize}
 \item Notation: \(\varphi\) has \(n\) variables \(x_1, x_2, \ldots, x_n\) and \(m\) clauses \(C_1, C_2, \ldots, C_m\).
 \end{enumerate}
\end{itemize}

\begin{itemize}
\item The Reduction: Phase I
 \begin{itemize}
 \item Traverse path \(i\) from left to right \iff \(x_i\) is set to true.
 \item Each path has \(3(m + 1)\) nodes where \(m\) is number of clauses in \(\varphi\); nodes numbered from left to right (1 to \(3m + 3\)).
 \end{itemize}
\end{itemize}
The Reduction: Phase II

- Add vertex c_j for clause C_j. c_j has edge from vertex $3j$ and to vertex $3j + 1$ on path i if x_i appears in clause C_j, and has edge from vertex $3j + 1$ and to vertex $3j$ if $\neg x_i$ appears in C_j.

In the next lecture...
Correctness proof of the above reduction, and more [NPC] problems.