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3.1: Definition of NP
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Problems
Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover @ 3SAT
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Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship
Vertex Cover =~p Independent Set =~pClique

3SAT =pSAT
3SAT<plIndependent Set
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3].]. Preliminaries
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3.1.1.1:problems and Algorithms
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Problems and Algorithms: Formal Approach

Decision Problems
@ Problem Instance: Binary string s, with size |s|

@ Problem: Set X of strings s.t. answer is “yes”: members of X
are YES instances of X.
Strings not in X are NO instances of X.
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Problems and Algorithms: Formal Approach

Decision Problems

@ Problem Instance: Binary string s, with size |s|

@ Problem: Set X of strings s.t. answer is “yes”: members of X
are YES instances of X.
Strings not in X are NO instances of X.

’

@ alg: algorithm for problem X if alg(s) ="yes" <= s € X.
@ alg have polynomial running time 3p(-) polynomial s.t. Vs,
alg(s) terminates in at most O(p(|s| )> steps.
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Polynomial Time

Definition

Polynomial time (denoted by P): class of all (decision) problems
that have an algorithm that solves it in polynomial time.
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Polynomial Time

Polynomial time (denoted by P): class of all (decision) problems
that have an algorithm that solves it in polynomial time.

Example

Problems in P include
@ Is there a shortest path from s to t of length < k in G?
@ s there a flow of value > k in network G?

© Is there an assignment to variables to satisfy given linear
constraints?
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Efficiency Hypothesis

Efficiency hypothesis.

A problem X has an efficient algorithm
<= X € P, that is X has a polynomial time algorithm.
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Efficiency Hypothesis

Efficiency hypothesis.

A problem X has an efficient algorithm
<= X € P, that is X has a polynomial time algorithm.

© Justifications:
@ Robustness of definition to variations in machines.
@ A sound theoretical definition.
©® Most known polynomial time algorithms for “natural” problems
have small polynomial running times.
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Problems that are hard...

...with no known polynomial time algorithms

© Independent Set
© Vertex Cover

@ Set Cover
Q SAT
@ 3SAT
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Problems that are hard...

...with no known polynomial time algorithms

© Independent Set
© Vertex Cover

@ Set Cover
Q SAT
@ 3SAT

@ undecidable problems are way harder (no algorithm at all!)
© ...but many problems want to solve: similar to above.

© Question: What is common to above problems?
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Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
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Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| < poly(|Ix]).
(C) Given C, I, efficiently check that Ix is YES
instance.

© Examples:

@ SAT formula ¢: proof is a satisfying assignment.
@ Independent Set in graph G and k:
Certificate: a subset S of vertices.
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3.1.2: Certifiers/Verifiers
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Definition

Algorithm C'(-, ) is certifier for problem X: Vs € X there 3t
such that C'(s,t) ="YES", and conversely, if for some s and t,
C(s,t) ="yes" then s € X.

Sariel (UIUC) New CS473 12 Fall 2015 12 /28



Definition

Algorithm C'(-, ) is certifier for problem X: Vs € X there 3t
such that C'(s,t) ="YES", and conversely, if for some s and t,
C(s,t) ="yes" then s € X.

t is the certificate or proof for s.

Sariel (UIUC) New CS473 12 Fall 2015 12 /28



Definition

Algorithm C'(-, ) is certifier for problem X: Vs € X there 3t
such that C(s,t) ="YES", and conversely, if for some s and t,
C(s,t) ="yes" then s € X.

t is the certificate or proof for s.

Definition (Efficient Certifier.)

Certifier C' is efficient certifier for X if there is a polynomial p(-)
s.t. for every string s:
* s € X if and only if
* there is a string t:
Q t] < p(|s]).
Q C(s,t) ="yes",
© and C runs in polynomial time.

V.
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Example: Independent Set

© Problem: Does G = (V, E) have an independent set of size
> k7
@ Certificate: Set S C V.
@ Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.
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313 Examples
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Example: Vertex Cover

@ Problem: Does G have a vertex cover of size < k7
@ Certificate: S C V.
@ Certifier: Check |S| < k and that for every edge at least one
endpoint is in S.
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Example: SAT

@ Problem: Does formula ¢ have a satisfying truth assignment?

@ Certificate: Assignment a of 0/1 values to each variable.
@ Certifier: Check each clause under a and say “yes” if all clauses
are true.
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Example:Composites

Composite

Instance: A number s.
Question: Is the number s a composite?

@ Problem: Composite.

@ Certificate: A factor t < s such that ¢ % 1 and t # s.
@ Certifier: Check that ¢ divides s.
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322 NP
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321 Definition
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Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

| A

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

A\
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Why is it called...

Nondeterministic Polynomial Time

© Certifier is algorithm C'(I, ¢) with two inputs:
@ 1I: instance.
@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.
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Why is it called...

Nondeterministic Polynomial Time

© Certifier is algorithm C'(I, ¢) with two inputs:
@ 1I: instance.
@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.

@ C “algorithm” for original problem, if:
© Given I, the algorithm guess (non-deterministically, and who

knows how) the certificate c.
@ Algorithm verifies certificate ¢ for the instance I.

© Usually NP is described using Turing machines (gag).

Sariel (UIUC) New CS473 21 Fall 2015 21 /28



Certifiers as algorithms...

...with a little help from an oracle friend.

] CERTIFIER

ORACLE

YES

A NO

@ Oracle: Guesses certificate ¢ for given instance I.

@ Certifier: Polynomial time, given I and ¢, verify that indeed ¢

proves that I is a YES instance.
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Asymmetry in Definition of NP

© Only YES instances have a short proof/certificate. NO
instances need not have a short certificate.
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Asymmetry in Definition of NP

© Only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

@ For example...

SAT formula . No easy way to prove that ¢ is NOT
satisfiable!

© More on this and co-NP later on.
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3.2.2: Intractability

Sariel (UIUC) New CS473 24 Fall 2015 24 /28



P versus NP

Proposition
P C NP.
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Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

V.
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Proof.
Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

@ C runs in polynomial time.
@ If s € X, then for every t, C(s,t) ="YES".
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Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.

Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

@ C runs in polynomial time.
@ If s € X, then for every t, C(s,t) ="YES".
Q If s € X, then for every t, C(s,t) ="NO". O

o’
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Exponential Time

Definition

Exponential Time (denoted EXP) set of all problems with
algorithm that runs in exponential time.
For input s: Running time is O(2P°¥(sD),
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Exponential Time

Definition

Exponential Time (denoted EXP) set of all problems with
algorithm that runs in exponential time.
For input s: Running time is O(2P°¥(sD),

Example: O(27), O(27108™), 0(2n3),
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NP versus EXP

Proposition
NP C EXP.

Proof.

Let X € NP with certifier C. Need to design an exponential time
algorithm for X.

Q For every t, with |t| < p(|s]) run C(s,t); answer “yes” if any

one of these calls returns “yes”.
@ The above algorithm correctly solves X (exercise).

© Algorithm runs in O(q(|s| + |p(s)])2P(*D), where q is the
running time of C. O

v
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@ SAT: try all possible truth assignment to variables.
@ Independent Set: try all possible subsets of vertices.
© Vertex Cover: try all possible subsets of vertices.
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Is NP efficiently solvable?

We know P C NP C EXP.
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Is NP efficiently solvable?

We know P C NP C EXP.

Blg Question

Is there are problem in NP that does not belong to P? Is P = NP?
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It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
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It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.

© No security on the web.

© No e-commerce ...

© Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).
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Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel /believe P # NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!
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3.3: NP Completeness
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Definition
An algorithm C(-, ) is a certifier for problem X if for every s € X
there is some string ¢ such that C(s,t) = "yes", and conversely, if

for some s and t, C'(s,t) = "yes" then s € X.
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C'is an efficient certifier for problem X if there is a
polynomial p(+) such that for every string s, we have that
*x s € X if and only if
* there is a string t:
Q [t] < p(|s]),
Q C(s,t) ="yes",
© and C runs in polynomial time.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if
Q@ X € NP, and

@ (Hardness) For any Y € NP, Y <p X.
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Solving NP-Complete Problems

Suppose X is NP-Complete. Then X can be solved in
polynomial time if and only if P = NP.

=> Suppose X can be solved in polynomial time
0 Let Y € NP. We know Y <p X.
@ We showed that if Y <p X and X can be solved in polynomial
time, then Y can be solved in polynomial time.
© Thus, every problem Y € NP is such that Y € P;
NP C P.
0@ Since P C NP, we have P = NP.

<« Since P = NP, and X € NP, we have a polynomial time
algorithm for X. O

v
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NP-Hard Problems

@ Formal definition:

Definition
A problem X is said to be NP-Hard if

@ (Hardness) For any Y € NP, we have that Y <p X.

Sariel (UIUC) New CS473 36 Fall 2015 36 /28



NP-Hard Problems

@ Formal definition:

Definition
A problem X is said to be NP-Hard if

@ (Hardness) For any Y € NP, we have that Y <p X.

@ An NP-Hard problem need not be in NP!
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NP-Hard Problems

@ Formal definition:

Definition
A problem X is said to be NP-Hard if

@ (Hardness) For any Y € NP, we have that Y <p X.

@ An NP-Hard problem need not be in NP!

@ Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.
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Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.

X is unlikely to be efficiently solvable.

@ At the very least, many smart people before you have failed to
find an efficient algorithm for X.
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Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.

X is unlikely to be efficiently solvable.

@ At the very least, many smart people before you have failed to
find an efficient algorithm for X.

© (This is proof by mob opinion — take with a grain of salt.)
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