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3.1: Definition of NP
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Recap . . .

Problems
1 Clique

2 Independent Set

3 Vertex Cover

1 Set Cover

2 SAT

3 3SAT
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3.1.1: Preliminaries
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3.1.1.1:Problems and Algorithms
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Problems and Algorithms: Formal Approach

Decision Problems
1 Problem Instance: Binary string s, with size |s|
2 Problem: Set X of strings s.t. answer is “yes”: members of X

are YES instances of X.
Strings not in X are NO instances of X.

Definition
1 alg: algorithm for problem X if alg(s) = ”yes” ⇐⇒ s ∈ X.

2 alg have polynomial running time ∃p(·) polynomial s.t. ∀s,
alg(s) terminates in at most O

(
p
(
|s|

))
steps.
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Polynomial Time

Definition
Polynomial time (denoted by P): class of all (decision) problems
that have an algorithm that solves it in polynomial time.
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Polynomial Time

Definition
Polynomial time (denoted by P): class of all (decision) problems
that have an algorithm that solves it in polynomial time.

Example

Problems in P include

1 Is there a shortest path from s to t of length ≤ k in G?

2 Is there a flow of value ≥ k in network G?

3 Is there an assignment to variables to satisfy given linear
constraints?
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Efficiency Hypothesis

Efficiency hypothesis.
A problem X has an efficient algorithm
⇐⇒ X ∈ P, that is X has a polynomial time algorithm.

1 Justifications:
1 Robustness of definition to variations in machines.
2 A sound theoretical definition.
3 Most known polynomial time algorithms for “natural” problems

have small polynomial running times.
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Problems that are hard...
...with no known polynomial time algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

1 undecidable problems are way harder (no algorithm at all!)

2 ...but many problems want to solve: similar to above.

3 Question: What is common to above problems?
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Efficient Checkability

1 Above problems have the property:

Checkability
For any YES instance IX of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| ≤ poly(|IX|).
(C) Given C, Ix: efficiently check that IX is YES

instance.

2 Examples:
1 SAT formula ϕ: proof is a satisfying assignment.
2 Independent Set in graph G and k:

Certificate: a subset S of vertices.
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3.1.2: Certifiers/Verifiers
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Certifiers

Definition
Algorithm C(·, ·) is certifier for problem X: ∀s ∈ X there ∃t
such that C(s, t) = ”YES”, and conversely, if for some s and t,
C(s, t) = ”yes” then s ∈ X.
t is the certificate or proof for s.
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such that C(s, t) = ”YES”, and conversely, if for some s and t,
C(s, t) = ”yes” then s ∈ X.
t is the certificate or proof for s.

Definition (Efficient Certifier.)

Certifier C is efficient certifier for X if there is a polynomial p(·)
s.t. for every string s:
? s ∈ X if and only if
? there is a string t:

1 |t| ≤ p(|s|),
2 C(s, t) = ”yes”,
3 and C runs in polynomial time.
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Example: Independent Set

1 Problem: Does G = (V,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.
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3.1.3: Examples
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Example: Vertex Cover

1 Problem: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S.
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Example: SAT

1 Problem: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.
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Example:Composites

Composite

Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t 6= 1 and t 6= s.
2 Certifier: Check that t divides s.
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3.2: NP
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3.2.1: Definition
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.
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Why is it called...
Nondeterministic Polynomial Time

1 Certifier is algorithm C(I, c) with two inputs:
1 I: instance.
2 c: proof/certificate that the instance is indeed a YES instance

of the given problem.

2 C “algorithm” for original problem, if:
1 Given I, the algorithm guess (non-deterministically, and who

knows how) the certificate c.
2 Algorithm verifies certificate c for the instance I.

3 Usually NP is described using Turing machines (gag).
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Certifiers as algorithms...
...with a little help from an oracle friend.

CERT IFIER

YES

NO

I

ORACLE
c

1 Oracle: Guesses certificate c for given instance I.

2 Certifier: Polynomial time, given I and c, verify that indeed c
proves that I is a YES instance.
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Asymmetry in Definition of NP

1 Only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

2 For example...

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT
satisfiable!

3 More on this and co-NP later on.
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3.2.2: Intractability
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P versus NP

Proposition

P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm alg. Need to demonstrate
that X has an efficient certifier:

1 Certifier C (input s, t):
runs alg(s) and returns its answer.

2 C runs in polynomial time.

3 If s ∈ X, then for every t, C(s, t) = ”YES”.

4 If s 6∈ X, then for every t, C(s, t) = ”NO”.
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Exponential Time

Definition
Exponential Time (denoted EXP) set of all problems with
algorithm that runs in exponential time.
For input s: Running time is O(2poly(|s|)).

Example: O(2n), O(2n log n), O
(
2n3

)
, . . .
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NP versus EXP

Proposition

NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C. Need to design an exponential time
algorithm for X.

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|s| + |p(s)|)2p(|s|)), where q is the
running time of C.

Sariel (UIUC) New CS473 27 Fall 2015 27 / 28



Examples

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.
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Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.
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Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?
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If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).
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P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!
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3.3: NP Completeness
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if for every s ∈ X
there is some string t such that C(s, t) = ”yes”, and conversely, if
for some s and t, C(s, t) = ”yes” then s ∈ X.
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that for every string s, we have that
? s ∈ X if and only if
? there is a string t:

1 |t| ≤ p(|s|),
2 C(s, t) = ”yes”,
3 and C runs in polynomial time.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.
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Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in
polynomial time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P ;

NP ⊆ P .
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X.
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NP-Hard Problems

1 Formal definition:

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

2 An NP-Hard problem need not be in NP!

3 Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P 6= NP,
2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

2 At the very least, many smart people before you have failed to
find an efficient algorithm for X.

3 (This is proof by mob opinion — take with a grain of salt.)
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