NEW CS 473: Theory II, Fall 2015

NP Completeness

Lecture 3 September 3, 2015

3.1: Definition of NP

Problems		
Olique	Set Cover	
Independent Set	SAT	
3 Vertex Cover	3SAT	

Recap . . .

Problems		
Olique	Set Cover	
Independent Set	② SAT	
3 Vertex Cover	3SAT	

Relationship

Independent Set \leq_P Clique

Recap . . .

Problems	
Olique	Set Cover
Independent Set	SAT
3 Vertex Cover	3SAT

Relationship

Independent Set \leq_P Clique

Problems		
Olique	Set Cover	
Independent Set	2 SAT	
3 Vertex Cover	3SAT	

Relationship

Independent Set \leq_P Clique \leq_P Independent Set

Recap . . .

Problems	
Olique	Set Cover
Independent Set	SAT
3 Vertex Cover	3SAT

Relationship

Independent Set \approx_P Clique

Problems		
Olique	Set Cover	
Independent Set	② SAT	
3 Vertex Cover	3SAT	

Relationship

Independent Set \approx_P Clique Independent Set \leq_P Vertex Cover

Problems	
Olique	Set Cover
Independent Set	SAT
3 Vertex Cover	3SAT

Relationship

Independent Set \approx_P Clique Independent Set \leq_P Vertex Cover \leq_P Independent Set

Problems	
Olique	Set Cover
Independent Set	SAT
3 Vertex Cover	3SAT

Relationship

Independent Set \approx_P Clique Independent Set \approx_P Vertex Cover

Recap . . .

Problems		
Olique	Set Cover	
Independent Set	② SAT	
3 Vertex Cover	3SAT	

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique

Recap . . .

Problems		
Olique	Set Cover	
Independent Set	SAT	
3 Vertex Cover	3SAT	

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \leq_P SAT

Problems	
Olique	Set Cover
Independent Set	SAT
3 Vertex Cover	3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \leq_P SAT \leq_P 3SAT

Recap . . .

Problems		
Olique	Set Cover	
Independent Set	SAT	
3 Vertex Cover	3SAT	

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \approx_P SAT

Problems	
Olique	Set Cover
Independent Set	SAT
3 Vertex Cover	3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \approx_P SAT 3SAT \leq_P Independent Set

3.1.1: Preliminaries

3.1.1.1: Problems and Algorithms

Problems and Algorithms: Formal Approach

Decision Problems

- **1** Problem Instance: Binary string s, with size |s|
- Problem: Set X of strings s.t. answer is "yes": members of X are YES instances of X. Strings not in X are NO instances of X.

Definition

- **1** alg: algorithm for problem X if $alg(s) = "yes" \iff s \in X$.
- alg have polynomial running time $\exists p(\cdot)$ polynomial s.t. $\forall s$, alg(s) terminates in at most O(p(|s|)) steps.

Problems and Algorithms: Formal Approach

Decision Problems

- **1** Problem Instance: Binary string s, with size |s|
- Problem: Set X of strings s.t. answer is "yes": members of X are YES instances of X. Strings not in X are NO instances of X.

Definition

- alg: algorithm for problem X if $alg(s) = "yes" \iff s \in X$.
- 3 alg have polynomial running time $\exists p(\cdot)$ polynomial s.t. $\forall s$, alg(s) terminates in at most O(p(|s|)) steps.

Polynomial Time

Definition

Polynomial time (denoted by **P**): class of all (decision) problems that have an algorithm that solves it in polynomial time.

Polynomial Time

Definition

Polynomial time (denoted by **P**): class of all (decision) problems that have an algorithm that solves it in polynomial time.

Example

Problems in **P** include

- **(**) Is there a shortest path from s to t of length $\leq k$ in **G**?
- ② Is there a flow of value $\geq k$ in network **G**?
- Is there an assignment to variables to satisfy given linear constraints?

Efficiency hypothesis.

A problem X has an efficient algorithm $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

Justifications:

- Robustness of definition to variations in machines.
- A sound theoretical definition.
- Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficiency hypothesis.

A problem X has an efficient algorithm $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

Justifications:

- O Robustness of definition to variations in machines.
- A sound theoretical definition.
- Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficiency hypothesis.

A problem X has an efficient algorithm $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

Justifications:

- O Robustness of definition to variations in machines.
- A sound theoretical definition.
- Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficiency hypothesis.

A problem X has an efficient algorithm $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

Justifications:

- O Robustness of definition to variations in machines.
- A sound theoretical definition.
- Most known polynomial time algorithms for "natural" problems have small polynomial running times.

...with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

undecidable problems are way harder (no algorithm at all!)

- Induction of the second state of the second
- Question: What is common to above problems?

...with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

undecidable problems are way harder (no algorithm at all!)

- Induction and problems want to solve: similar to above.
- Question: What is common to above problems?

...with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT
- undecidable problems are way harder (no algorithm at all!)
- Induction of the second state of the second
- Question: What is common to above problems?

...with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT
- undecidable problems are way harder (no algorithm at all!)
- Induct of the second state of the second st
- Question: What is common to above problems?

Above problems have the property:

Checkability

For any YES instance I_X of X:

(A) there is a proof (or certificate) C.

- B) Length of certificate $|C| \leq \operatorname{poly}(|I_X|)$.
- C) Given C, I_x : efficiently check that I_X is YES instance.

- **0** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
 - C) Given C, I_x : efficiently check that I_X is YES instance.

- **0** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.

- **0** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.

- **§** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.

2 Examples:

- **§** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k:

Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.

- **§** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: Certificate: a subset S of vertices.

$3.1.2: \ {\sf Certifiers}/{\sf Verifiers}$
Certifiers

Definition

Algorithm $C(\cdot, \cdot)$ is **certifier** for problem $X: \forall s \in X$ there $\exists t$ such that C(s, t) = "YES", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

 $m{t}$ is the certificate or proof for $m{s}.$

Certifiers

Definition

Algorithm $C(\cdot, \cdot)$ is certifier for problem $X: \forall s \in X$ there $\exists t$ such that C(s, t) = "YES", and conversely, if for some s and t, $\underline{C(s, t)} = "yes"$ then $s \in X$.

t is the certificate or proof for s.

Certifiers

Definition

Algorithm $C(\cdot, \cdot)$ is certifier for problem $X: \forall s \in X$ there $\exists t$ such that C(s, t) = "YES", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

t is the certificate or proof for s.

Definition (Efficient Certifier.)

Certifier C is efficient certifier for X if there is a polynomial $p(\cdot)$ s.t. for every string s:

- $\star \ s \in X$ if and only if
- \star there is a string **t**:

$$|t| \le p(|s|),$$

2
$$C(s,t) =$$
 "yes",

and C runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - **2** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

3.1.3: Examples

Example: Vertex Cover

1 Problem: Does **G** have a vertex cover of size $\leq k$?

- Certificate: $S \subseteq V$.
- **2** Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

1 Problem: Does formula φ have a satisfying truth assignment?

- Certificate: Assignment a of 0/1 values to each variable.
- Certifier: Check each clause under a and say "yes" if all clauses are true.

Composite

Instance: A number *s*. **Question**: Is the number *s* a composite?

- Problem: Composite.
 - Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.
 - **2** Certifier: Check that t divides s.

3.2: **NP**

3.2.1: Definition

19

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

• Certifier is algorithm C(I, c) with two inputs:

- I: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.
- 2 C "algorithm" for original problem, if:
 - Given *I*, the algorithm guess (non-deterministically, and who knows how) the certificate *c*.
 - ② Algorithm verifies certificate c for the instance I.
- **3** Usually **NP** is described using Turing machines (gag).

- Certifier is algorithm C(I, c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
- C "algorithm" for original problem, if:
 - Given *I*, the algorithm guess (non-deterministically, and who knows how) the certificate *c*.
 - ② Algorithm verifies certificate $m{c}$ for the instance $m{I}$.
- **3** Usually **NP** is described using Turing machines (gag).

- Certifier is algorithm C(I, c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
- \bigcirc C "algorithm" for original problem, if:
 - Given *I*, the algorithm guess (non-deterministically, and who knows how) the certificate *c*.
 - **2** Algorithm verifies certificate c for the instance I.

3 Usually **NP** is described using Turing machines (gag).

- Certifier is algorithm C(I, c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
- \bigcirc C "algorithm" for original problem, if:
 - Given *I*, the algorithm guess (non-deterministically, and who knows how) the certificate *c*.
 - **2** Algorithm verifies certificate c for the instance I.
- **③** Usually **NP** is described using Turing machines (gag).

Certifiers as algorithms...

...with a little help from an oracle friend.

- **()** Oracle: Guesses certificate *c* for given instance *I*.
- Certifier: Polynomial time, given *I* and *c*, verify that indeed *c* proves that *I* is a YES instance.

Asymmetry in Definition of NP

- Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
- Por example...

Example

SAT formula arphi. No easy way to prove that arphi is NOT satisfiable!

More on this and **co-NP** later on.

Asymmetry in Definition of NP

- Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
- Por example...

More on this and **co-NP** later on.

Asymmetry in Definition of NP

- Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
- Por example...

More on this and co-NP later on.

3.2.2: Intractability

$\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in P no need for a certificate!

Proof.

- Certifier C (input s, t): runs alg(s) and returns its answer.
- C runs in polynomial time.
- If $s \in X$, then for every t, C(s,t) = "YES".
- If $s \not\in X$, then for every t, C(s,t) = "NO".

$\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in \mathbf{P} no need for a certificate!

Proof.

- Certifier C (input s, t): runs alg(s) and returns its answer.
- C runs in polynomial time.
- If $s \in X$, then for every t, C(s,t) = "YES".
- If $s \not\in X$, then for every t, C(s,t) = "NO".

 $\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in \mathbf{P} no need for a certificate!

Proof.

- Certifier C (input s, t): runs alg(s) and returns its answer.
- C runs in polynomial time.
- **3** If $s \in X$, then for every t, C(s,t) = "YES".
- ${ullet}$ If $s
 ot\in X$, then for every t, C(s,t)= "NO".

 $\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in \mathbf{P} no need for a certificate!

Proof.

- Certifier C (input s, t): runs alg(s) and returns its answer.
- I C runs in polynomial time.
- \bullet If $s \in X$, then for every t, C(s,t) = "YES".
- ${ullet}$ If $s
 ot\in X$, then for every t, C(s,t)= "NO".

 $\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in \mathbf{P} no need for a certificate!

Proof.

Consider problem $X \in \mathsf{P}$ with algorithm alg. Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs alg(s) and returns its answer.
- I C runs in polynomial time.
- 3 If $s \in X$, then for every t, $C(s,t) = "\operatorname{YES}"$.

) If $s
ot\in X$, then for every t, C(s,t) = " NO ".

 $\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in \mathbf{P} no need for a certificate!

Proof.

- Certifier C (input s, t): runs alg(s) and returns its answer.
- I C runs in polynomial time.
- 3 If $s \in X$, then for every t, $C(s,t) = "\operatorname{YES}"$.
- If $s \not\in X$, then for every t, C(s,t) = "NO".

Exponential Time

Definition

Exponential Time (denoted **EXP**) set of all problems with algorithm that runs in exponential time. For input *s*: Running time is $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O\left(2^{n^3}\right)$, ...

Exponential Time

Definition

Exponential Time (denoted **EXP**) set of all problems with algorithm that runs in exponential time. For input *s*: Running time is $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O\left(2^{n^3}\right)$, ...

NP versus EXP

Proposition

 $\mathsf{NP} \subseteq \mathsf{EXP}.$

Proof.

Let $X \in \mathsf{NP}$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \le p(|s|)$ run C(s, t); answer "yes" if any one of these calls returns "yes".
- 2 The above algorithm correctly solves X (exercise).
- 3 Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- **SAT**: try all possible truth assignment to variables.
- **Independent Set**: try all possible subsets of vertices.
- **Overtex Cover**: try all possible subsets of vertices.

Is **NP** efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$.

Is **NP** efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

If $\mathbf{P} = \mathbf{NP} \dots$

Or: If pigs could fly then life would be sweet.

Many important optimization problems can be solved efficiently.

- ② The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P} = \mathbf{NP} \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
 The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P} = \mathbf{NP} \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).
If $P = NP \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P} = \mathbf{NP} \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

P versus NP

Status

Relationship between ${\bf P}$ and ${\bf NP}$ remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $\mathbf{P} \neq \mathbf{NP}$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

3.3: NP Completeness

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$. The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an **efficient certifier** for problem X if there is a polynomial $p(\cdot)$ such that for every string s, we have that $\star \ s \in X$ if and only if \star there is a string t: $|t| \le p(|s|),$ C(s,t) = "yes",and C runs in polynomial time.

NP-Complete Problems

Definition

A problem X is said to be **NP-Complete** if

- $X \in \mathsf{NP}$, and
- **2** (Hardness) For any $Y \in \mathbb{NP}$, $Y \leq_P X$.

34

34 / 28

Solving NP-Complete Problems

Proposition

Suppose X is **NP-Complete**. Then X can be solved in polynomial time if and only if P = NP.

Proof.

 \Rightarrow Suppose X can be solved in polynomial time

- Let $Y \in \mathsf{NP}$. We know $\mathsf{Y} \leq_P \mathsf{X}$.
- **2** We showed that if $\mathbf{Y} \leq_{P} \mathbf{X}$ and \mathbf{X} can be solved in polynomial time, then \mathbf{Y} can be solved in polynomial time.
- Thus, every problem $Y \in \mathsf{NP}$ is such that $Y \in P$; $NP \subseteq P$.

• Since $\mathbf{P} \subseteq \mathbf{NP}$, we have $\mathbf{P} = \mathbf{NP}$.

 $\Leftarrow \text{ Since } \mathbf{P} = \mathbf{NP}, \text{ and } \mathbf{X} \in \mathbf{NP}, \text{ we have a polynomial time algorithm for } \mathbf{X}.$

NP-Hard Problems

Formal definition:

Definition

A problem X is said to be **NP-Hard** if

• (Hardness) For any $Y \in \mathbb{NP}$, we have that $Y \leq_P X$.

② An **NP-Hard** problem need not be in **NP**!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

36

NP-Hard Problems

Formal definition:

Definition

A problem X is said to be **NP-Hard** if

• (Hardness) For any $Y \in \mathbb{NP}$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

36

NP-Hard Problems

Formal definition:

Definition

A problem X is said to be **NP-Hard** if

• (Hardness) For any $Y \in \mathbb{NP}$, we have that $Y \leq_P X$.

- An NP-Hard problem need not be in NP!
- Example: Halting problem is NP-Hard (why?) but not NP-Complete.

• If X is NP-Complete

- Since we believe $\mathbf{P} \neq \mathbf{NP}$,
- **and solving** X implies P = NP.

X is unlikely to be efficiently solvable.

- At the very least, many smart people before you have failed to find an efficient algorithm for X.
- In this is proof by mob opinion take with a grain of salt.)

• If X is NP-Complete

- Since we believe $\mathbf{P} \neq \mathbf{NP}$,
- **2** and solving X implies P = NP.
- \boldsymbol{X} is unlikely to be efficiently solvable.
- At the very least, many smart people before you have failed to find an efficient algorithm for X.
- In this is proof by mob opinion take with a grain of salt.)

• If X is NP-Complete

- Since we believe $\mathbf{P} \neq \mathbf{NP}$,
- **2** and solving X implies P = NP.
- \boldsymbol{X} is unlikely to be efficiently solvable.
- At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

• If X is NP-Complete

- Since we believe $\mathbf{P} \neq \mathbf{NP}$,
- **2** and solving X implies P = NP.
- \boldsymbol{X} is unlikely to be efficiently solvable.
- At the very least, many smart people before you have failed to find an efficient algorithm for X.
- (This is proof by mob opinion take with a grain of salt.)

41 / 28