NEW CS 473: Theory Il, Fall 2015

NP Completeness

Lecture 3
September 3, 2015

New CS473 1 Fall 2015 1/28

3.1: Definition of NP

New CS473 Fall 2015 2 /28

Problems
Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover @ 3SAT

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

|

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship
Independent Set <p Clique

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship
Independent Set <p Clique<plndependent Set

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT
Relationship

Independent Set ~pClique

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

Independent Set ~pClique
Independent Set <pVertex Cover

Sariel (UIUC) New CS473 Fall 2015

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

Independent Set ~pClique
Independent Set <pVertex Cover <plndependent Set

Sariel (UIUC) New CS473 Fall 2015

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

Independent Set ~pClique
Independent Set =~pVertex Cover

Sariel (UIUC) New CS473 Fall 2015

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT
Relationship

Vertex Cover =~p Independent Set =~pClique

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

Vertex Cover =~p Independent Set =~pClique
3SAT <pSAT

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

Vertex Cover =~p Independent Set =~pClique
3SAT <pSAT<p3SAT

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship

Vertex Cover =~p Independent Set =~pClique
3SAT ~pSAT

Sariel (UIUC) New CS473 Fall 2015 3 /28

Problems

Q@ Clique Q@ Set Cover
@ Independent Set Q@ SAT

© Vertex Cover © 3SAT

Relationship
Vertex Cover =~p Independent Set =~pClique

3SAT =pSAT
3SAT<plIndependent Set

Sariel (UIUC) New CS473 3 Fall 2015 3 /28

3].]. Preliminaries

Sariel (UIUC) New CS473 4 Fall 2015 4 /28

3.1.1.1:problems and Algorithms

Sariel (UIUC) New CS473 5 Fall 2015 5 /28

Problems and Algorithms: Formal Approach

Decision Problems
@ Problem Instance: Binary string s, with size |s|

@ Problem: Set X of strings s.t. answer is “yes”: members of X
are YES instances of X.
Strings not in X are NO instances of X.

Sariel (UIUC) New CS473 [3 Fall 2015 6 /28

Problems and Algorithms: Formal Approach

Decision Problems

@ Problem Instance: Binary string s, with size |s|

@ Problem: Set X of strings s.t. answer is “yes”: members of X
are YES instances of X.
Strings not in X are NO instances of X.

’

@ alg: algorithm for problem X if alg(s) ="yes" <= s € X.
@ alg have polynomial running time 3p(-) polynomial s.t. Vs,
alg(s) terminates in at most O(p(|s|)> steps.

Fall 2015 6 /28

Sariel (UIUC) New CS473

Polynomial Time

Definition

Polynomial time (denoted by P): class of all (decision) problems
that have an algorithm that solves it in polynomial time.

Sariel (UIUC) New CS473 Fall 2015 7 /28

Polynomial Time

Polynomial time (denoted by P): class of all (decision) problems
that have an algorithm that solves it in polynomial time.

Example

Problems in P include
@ Is there a shortest path from s to t of length < k in G?
@ s there a flow of value > k in network G?

© Is there an assignment to variables to satisfy given linear
constraints?

Sariel (UIUC) New CS473 7 Fall 2015 7 /28

Efficiency Hypothesis

Efficiency hypothesis.

A problem X has an efficient algorithm
<= X € P, that is X has a polynomial time algorithm.

Sariel (UIUC) New CS473 Fall 2015 8 /28

Efficiency Hypothesis

Efficiency hypothesis.

A problem X has an efficient algorithm
<= X € P, that is X has a polynomial time algorithm.

@ Justifications:
©® Robustness of definition to variations in machines.

Sariel (UIUC) New CS473 Fall 2015 8 /28

Efficiency Hypothesis

Efficiency hypothesis.

A problem X has an efficient algorithm
<= X € P, that is X has a polynomial time algorithm.

@ Justifications:

@ Robustness of definition to variations in machines.
@ A sound theoretical definition.

Sariel (UIUC) New CS473 Fall 2015 8 /28

Efficiency Hypothesis

Efficiency hypothesis.

A problem X has an efficient algorithm
<= X € P, that is X has a polynomial time algorithm.

© Justifications:
@ Robustness of definition to variations in machines.
@ A sound theoretical definition.
©® Most known polynomial time algorithms for “natural” problems
have small polynomial running times.

Sariel (UIUC) New CS473 Fall 2015 8 /28

Problems that are hard...

...with no known polynomial time algorithms

© Independent Set
© Vertex Cover

@ Set Cover
Q SAT
@ 3SAT

Sariel (UIUC) New CS473 Fall 2015 9 /28

Problems that are hard...

...with no known polynomial time algorithms

© Independent Set
© Vertex Cover

@ Set Cover
Q SAT
@ 3SAT

@ undecidable problems are way harder (no algorithm at all!)

Sariel (UIUC) New CS473 Fall 2015 9 /28

Problems that are hard...

...with no known polynomial time algorithms

© Independent Set
© Vertex Cover

@ Set Cover
Q SAT
@ 3SAT

@ undecidable problems are way harder (no algorithm at all!)

© ...but many problems want to solve: similar to above.

Sariel (UIUC) New CS473 Fall 2015 9 /28

Problems that are hard...

...with no known polynomial time algorithms

© Independent Set
© Vertex Cover

@ Set Cover
Q SAT
@ 3SAT

@ undecidable problems are way harder (no algorithm at all!)
© ...but many problems want to solve: similar to above.

© Question: What is common to above problems?

Sariel (UIUC) New CS473 Fall 2015 9 /28

Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.

Sariel (UIUC) New CS473 10 Fall 2015 10 /28

Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| < poly(|Ix]).

Sariel (UIUC) New CS473 10 Fall 2015 10 /28

Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| < poly(|Ix]).
(C) Given C, I, efficiently check that Ix is YES
instance.

Sariel (UIUC) New CS473 10 Fall 2015 10 /28

Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| < poly(|Ix]).
(C) Given C, I, efficiently check that Ix is YES
instance.

© Examples:
@ SAT formula ¢: proof is a satisfying assignment.

Sariel (UIUC) New CS473 10 Fall 2015 10 /28

Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| < poly(|Ix]).
(C) Given C, I, efficiently check that Ix is YES
instance.

© Examples:

@ SAT formula ¢: proof is a satisfying assignment.
@ Independent Set in graph G and k:

Sariel (UIUC) New CS473 10 Fall 2015 10 /28

Efficient Checkability

© Above problems have the property:

Checkability

For any YES instance I'x of X:
(A) there is a proof (or certificate) C.
(B) Length of certificate |C| < poly(|Ix]).
(C) Given C, I, efficiently check that Ix is YES
instance.

© Examples:

@ SAT formula ¢: proof is a satisfying assignment.
@ Independent Set in graph G and k:
Certificate: a subset S of vertices.

Sariel (UIUC) New CS473 10 Fall 2015 10 /28

3.1.2: Certifiers/Verifiers

Sariel (UIUC) New CS473 11 Fall 2015 11 /28

Definition

Algorithm C'(-,) is certifier for problem X: Vs € X there 3t
such that C'(s,t) ="YES", and conversely, if for some s and t,
C(s,t) ="yes" then s € X.

Sariel (UIUC) New CS473 12 Fall 2015 12 /28

Definition

Algorithm C'(-,) is certifier for problem X: Vs € X there 3t
such that C'(s,t) ="YES", and conversely, if for some s and t,
C(s,t) ="yes" then s € X.

t is the certificate or proof for s.

Sariel (UIUC) New CS473 12 Fall 2015 12 /28

Definition

Algorithm C'(-,) is certifier for problem X: Vs € X there 3t
such that C(s,t) ="YES", and conversely, if for some s and t,
C(s,t) ="yes" then s € X.

t is the certificate or proof for s.

Definition (Efficient Certifier.)

Certifier C' is efficient certifier for X if there is a polynomial p(-)
s.t. for every string s:
* s € X if and only if
* there is a string t:
Q t] < p(|s]).
Q C(s,t) ="yes",
© and C runs in polynomial time.

V.

Sariel (UIUC) New CS473 12 Fall 2015 12 /28

Example: Independent Set

© Problem: Does G = (V, E) have an independent set of size
> k7
@ Certificate: Set S C V.
@ Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.

Sariel (UIUC) New CS473 13 Fall 2015 13 /28

313 Examples

Sariel (UIUC) New CS473 14 Fall 2015 14 / 28

Example: Vertex Cover

@ Problem: Does G have a vertex cover of size < k7
@ Certificate: S C V.
@ Certifier: Check |S| < k and that for every edge at least one
endpoint is in S.

Sariel (UIUC) New CS473 15 Fall 2015 15 /28

Example: SAT

@ Problem: Does formula ¢ have a satisfying truth assignment?

@ Certificate: Assignment a of 0/1 values to each variable.
@ Certifier: Check each clause under a and say “yes” if all clauses
are true.

Sariel (UIUC) New CS473 16 Fall 2015 16 / 28

Example:Composites

Composite

Instance: A number s.
Question: Is the number s a composite?

@ Problem: Composite.

@ Certificate: A factor t < s such that ¢ % 1 and t # s.
@ Certifier: Check that ¢ divides s.

Sariel (UIUC) New CS473 17 Fall 2015 17 / 28

322 NP

Sariel (UIUC) New CS473 18 Fall 2015 18 / 28

321 Definition

Sariel (UIUC) New CS473 19 Fall 2015 19 /28

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Sariel (UIUC) New CS473 20 Fall 2015 20 /28

Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

| A

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

A\

Sariel (UIUC) New CS473 20 Fall 2015 20 /28

Why is it called...

Nondeterministic Polynomial Time

© Certifier is algorithm C'(I, ¢) with two inputs:
@ 1I: instance.
@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.

Sariel (UIUC) New CS473 21 Fall 2015 21 /28

Why is it called...

Nondeterministic Polynomial Time

© Certifier is algorithm C'(I, ¢) with two inputs:
@ 1I: instance.
@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.

@ C “algorithm” for original problem, if:
© Given I, the algorithm guess (non-deterministically, and who
knows how) the certificate c.

Sariel (UIUC) New CS473 21 Fall 2015 21 /28

Why is it called...

Nondeterministic Polynomial Time

© Certifier is algorithm C'(I, ¢) with two inputs:
@ I: instance.
@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.
@ C “algorithm” for original problem, if:
© Given I, the algorithm guess (non-deterministically, and who
knows how) the certificate c.
@ Algorithm verifies certificate ¢ for the instance I.

Sariel (UIUC) New CS473 21 Fall 2015 21 /28

Why is it called...

Nondeterministic Polynomial Time

© Certifier is algorithm C'(I, ¢) with two inputs:
@ 1I: instance.
@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.

@ C “algorithm” for original problem, if:
© Given I, the algorithm guess (non-deterministically, and who

knows how) the certificate c.
@ Algorithm verifies certificate ¢ for the instance I.

© Usually NP is described using Turing machines (gag).

Sariel (UIUC) New CS473 21 Fall 2015 21 /28

Certifiers as algorithms...

...with a little help from an oracle friend.

] CERTIFIER

ORACLE

YES

A NO

@ Oracle: Guesses certificate ¢ for given instance I.

@ Certifier: Polynomial time, given I and ¢, verify that indeed ¢

proves that I is a YES instance.

Sariel (UIUC) New CS473 22

Fall 2015 22 /28

Asymmetry in Definition of NP

© Only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Sariel (UIUC) New CS473 23 Fall 2015 23 /28

Asymmetry in Definition of NP

© Only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

@ For example...

SAT formula . No easy way to prove that ¢ is NOT
satisfiable!

Sariel (UIUC) New CS473 23 Fall 2015 23 /28

Asymmetry in Definition of NP

© Only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

@ For example...

SAT formula . No easy way to prove that ¢ is NOT
satisfiable!

© More on this and co-NP later on.

Sariel (UIUC) New CS473 23 Fall 2015 23 /28

3.2.2: Intractability

Sariel (UIUC) New CS473 24 Fall 2015 24 /28

P versus NP

Proposition
P C NP.

Sariel (UIUC) New CS473 25 Fall 2015 25 /28

Proposition
P C NP.

For a problem in P no need for a certificate!

Sariel (UIUC) New CS473 25 Fall 2015 25 /28

Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

V.

Sariel (UIUC) New CS473 25 Fall 2015 25 /28

Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

@ C runs in polynomial time.

V.

Sariel (UIUC) New CS473 25 Fall 2015 25 /28

Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

@ C runs in polynomial time.
@ If s € X, then for every t, C(s,t) ="YES".

V.

Sariel (UIUC) New CS473 25 Fall 2015 25 /28

Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.

Consider problem X € P with algorithm alg. Need to demonstrate
that X has an efficient certifier:
Q Certifier C (input s, t):
runs alg(s) and returns its answer.

@ C runs in polynomial time.
@ If s € X, then for every t, C(s,t) ="YES".
Q If s € X, then for every t, C(s,t) ="NO". O

o’

Sariel (UIUC) New CS473 25 Fall 2015 25 /28

Exponential Time

Definition

Exponential Time (denoted EXP) set of all problems with
algorithm that runs in exponential time.
For input s: Running time is O(2P°¥(sD),

Sariel (UIUC) New CS473 26 Fall 2015 26 /28

Exponential Time

Definition

Exponential Time (denoted EXP) set of all problems with
algorithm that runs in exponential time.
For input s: Running time is O(2P°¥(sD),

Example: O(27), O(27108™), 0(2n3),

Sariel (UIUC) New CS473 26 Fall 2015 26 /28

NP versus EXP

Proposition
NP C EXP.

Proof.

Let X € NP with certifier C. Need to design an exponential time
algorithm for X.

Q For every t, with |t| < p(|s]) run C(s,t); answer “yes” if any

one of these calls returns “yes”.
@ The above algorithm correctly solves X (exercise).

© Algorithm runs in O(q(|s| + |p(s)])2P(*D), where q is the
running time of C. O

v

Sariel (UIUC) New CS473 27 Fall 2015 27 / 28

@ SAT: try all possible truth assignment to variables.
@ Independent Set: try all possible subsets of vertices.
© Vertex Cover: try all possible subsets of vertices.

Sariel (UIUC) New CS473 28 Fall 2015 28 /28

Is NP efficiently solvable?

We know P C NP C EXP.

Sariel (UIUC) New CS473 Fall 2015 29 /28

Is NP efficiently solvable?

We know P C NP C EXP.

Blg Question

Is there are problem in NP that does not belong to P? Is P = NP?

Sariel (UIUC) New CS473 29 Fall 2015 29 /28

It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.

Sariel (UIUC) New CS473 30 Fall 2015 30 /28

It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.

Sariel (UIUC) New CS473 30 Fall 2015 30 /28

It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.
© No security on the web.

Sariel (UIUC) New CS473 30 Fall 2015 30 /28

It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.
© No security on the web.

@ No e-commerce ...

Sariel (UIUC) New CS473 30 Fall 2015 30 /28

It P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.

© No security on the web.

© No e-commerce ...

© Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel (UIUC) New CS473 30 Fall 2015 30 /28

Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel /believe P # NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!

Sariel (UIUC) New CS473 31 Fall 2015 31 /28

3.3: NP Completeness

New CS473 32 Fall 2015 32/28

Definition
An algorithm C(-,) is a certifier for problem X if for every s € X
there is some string ¢ such that C(s,t) = "yes", and conversely, if

for some s and t, C'(s,t) = "yes" then s € X.
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C'is an efficient certifier for problem X if there is a
polynomial p(+) such that for every string s, we have that
*x s € X if and only if
* there is a string t:
Q [t] < p(|s]),
Q C(s,t) ="yes",
© and C runs in polynomial time.

Sariel (UIUC) New CS473 33 Fall 2015 33 /28

NP-Complete Problems

Definition
A problem X is said to be NP-Complete if
Q@ X € NP, and

@ (Hardness) For any Y € NP, Y <p X.

Sariel (UIUC) New CS473 34 Fall 2015 34 /28

Solving NP-Complete Problems

Suppose X is NP-Complete. Then X can be solved in
polynomial time if and only if P = NP.

=> Suppose X can be solved in polynomial time
0 Let Y € NP. We know Y <p X.
@ We showed that if Y <p X and X can be solved in polynomial
time, then Y can be solved in polynomial time.
© Thus, every problem Y € NP is such that Y € P;
NP C P.
0@ Since P C NP, we have P = NP.

<« Since P = NP, and X € NP, we have a polynomial time
algorithm for X. O

v

Sariel (UIUC) New CS473 35 Fall 2015 35 /28

NP-Hard Problems

@ Formal definition:

Definition
A problem X is said to be NP-Hard if

@ (Hardness) For any Y € NP, we have that Y <p X.

Sariel (UIUC) New CS473 36 Fall 2015 36 /28

NP-Hard Problems

@ Formal definition:

Definition
A problem X is said to be NP-Hard if

@ (Hardness) For any Y € NP, we have that Y <p X.

@ An NP-Hard problem need not be in NP!

Sariel (UIUC) New CS473 36 Fall 2015 36 /28

NP-Hard Problems

@ Formal definition:

Definition
A problem X is said to be NP-Hard if

@ (Hardness) For any Y € NP, we have that Y <p X.

@ An NP-Hard problem need not be in NP!

@ Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Sariel (UIUC) New CS473 36 Fall 2015 36 /28

Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.

Sariel (UIUC) New CS473 37 Fall 2015 37 /28

Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.

X is unlikely to be efficiently solvable.

Sariel (UIUC) New CS473 37 Fall 2015 37 /28

Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.

X is unlikely to be efficiently solvable.

@ At the very least, many smart people before you have failed to
find an efficient algorithm for X.

Sariel (UIUC) New CS473 37 Fall 2015 37 /28

Consequences of proving NP-Completeness

Q@ If X is NP-Complete

@ Since we believe P £ NP,
@ and solving X implies P = NP.

X is unlikely to be efficiently solvable.

@ At the very least, many smart people before you have failed to
find an efficient algorithm for X.

© (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) New CS473 37 Fall 2015 37 /28

Sariel (UIUC) New CS473 38 Fall 2015 38 /28

Sariel (UIUC) New CS473 39 Fall 2015 39 /28

Sariel (UIUC) New CS473 40 Fall 2015 40 /28

Sariel (UIUC) New CS473 41 Fall 2015 41 /28

	Definition of NP
	Preliminaries
	Certifiers/Verifiers
	Examples

	NP
	Definition
	Intractability

	NP Completeness

