NEW CS 473: Theory II, Fall 2015

Reductions and NP

Lecture 2
August 27, 2015

Part I

Total recall...

Polynomial-time reductions

(1) Algorithm is efficient if it runs in polynomial-time.
(2) Interested only in polynomial-time reductions.
(3) $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: Have polynomial-time reduction from problem \boldsymbol{X} to problem \boldsymbol{Y}.
(1) \mathcal{A}_{Y} : poly-time algorithm for $Y$$\Longrightarrow$ Polynomial-time/efficient algorithm for \boldsymbol{X}

Polynomial-time reductions

(1) Algorithm is efficient if it runs in polynomial-time.
(2) Interested only in polynomial-time reductions.
(3) $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: Have polynomial-time reduction from problem \boldsymbol{X} to problem \boldsymbol{Y}.
(9) \mathcal{A}_{Y} : poly-time algorithm for Y
(3) Polynomial-time/efficient algorithm for \boldsymbol{X}

Polynomial-time reductions

(1) Algorithm is efficient if it runs in polynomial-time.
(2) Interested only in polynomial-time reductions.
(0) $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: Have polynomial-time reduction from problem \boldsymbol{X} to problem \boldsymbol{Y}.
(1) $\mathcal{A}_{\boldsymbol{Y}}$: poly-time algorithm for \boldsymbol{Y}.

- \Longrightarrow Polynomial-time/efficient algorithm for X

Polynomial-time reductions

(1) Algorithm is efficient if it runs in polynomial-time.
(2) Interested only in polynomial-time reductions.
(0) $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: Have polynomial-time reduction from problem \boldsymbol{X} to problem \boldsymbol{Y}.
(1) $\mathcal{A}_{\boldsymbol{Y}}$: poly-time algorithm for \boldsymbol{Y}.
($\boldsymbol{\Longrightarrow}$ Polynomial-time/efficient algorithm for \boldsymbol{X}.
2.1: Polynomial time reductions

Polynomial-time reductions and instance sizes

Proposition

\mathcal{R} : a polynomial-time reduction from \boldsymbol{X} to \boldsymbol{Y}.
Then, for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X}, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y} produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by $\boldsymbol{\mathcal { R }}$ is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.
\square
\mathcal{R} is a polynomial-time algorithm and hence on input I_{X} of size $\left|I_{X}\right|$ it runs in time $p\left(\left|I_{X}\right|\right)$ for some polynomial $p()$ I_{Y} is the output of \mathcal{R} on input I_{X} \mathcal{R} can write at most $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ bits and hence $\left|I_{Y}\right| \leq p\left(\left|I_{X}\right|\right)$
Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

\mathcal{R} : a polynomial-time reduction from \boldsymbol{X} to \boldsymbol{Y}.
Then, for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X}, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y} produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by $\boldsymbol{\mathcal { R }}$ is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.

Proof.

\mathcal{R} is a polynomial-time algorithm and hence on input $\boldsymbol{I}_{\boldsymbol{X}}$ of size $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$ it runs in time $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ for some polynomial $\boldsymbol{p}()$.
$\boldsymbol{I}_{\boldsymbol{Y}}$ is the output of \mathcal{R} on input $\boldsymbol{I}_{\boldsymbol{X}}$.
\mathcal{R} can write at most $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ bits and hence $\left|\boldsymbol{I}_{\boldsymbol{Y}}\right| \leq \boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$.

Note: Converse is not true. A reduction need not be polynomial-time

 even if output of reduction is of size polynomial in its input.
Polynomial-time reductions and instance sizes

Proposition

\mathcal{R} : a polynomial-time reduction from \boldsymbol{X} to \boldsymbol{Y}.
Then, for any instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X}, the size of the instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y} produced from $\boldsymbol{I}_{\boldsymbol{X}}$ by $\boldsymbol{\mathcal { R }}$ is polynomial in the size of $\boldsymbol{I}_{\boldsymbol{X}}$.

Proof.

\mathcal{R} is a polynomial-time algorithm and hence on input $\boldsymbol{I}_{\boldsymbol{X}}$ of size $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$ it runs in time $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ for some polynomial $\boldsymbol{p}()$.
$\boldsymbol{I}_{\boldsymbol{Y}}$ is the output of \mathcal{R} on input $\boldsymbol{I}_{\boldsymbol{X}}$.
\mathcal{R} can write at most $\boldsymbol{p}\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ bits and hence $\left|\boldsymbol{I}_{\boldsymbol{Y}}\right| \leq \boldsymbol{p}\left(\left|\boldsymbol{I}_{X}\right|\right)$.
Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

Definition

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|I_{X}\right| . \quad\left(\left|I_{Y}\right|=\right.$ size of $\left.I_{Y}\right)$.
(3) Answer to $\boldsymbol{I}_{\boldsymbol{X}}$ YES \Longleftrightarrow answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES.

Polynomial-time Reduction

Definition

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{\boldsymbol{X}}\right|$. $\quad\left(\left|I_{Y}\right|=\right.$ size of $\left.I_{Y}\right)$.
(0) Answer to I_{X} YES \Longleftrightarrow answer to I_{Y} is YES.

Proposition

If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

Polynomial-time Reduction

Definition

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{X}\right| . \quad\left(\left|\boldsymbol{I}_{Y}\right|=\right.$ size of $\left.\boldsymbol{I}_{Y}\right)$.
(3) Answer to $\boldsymbol{I}_{\boldsymbol{X}}$ YES \Longleftrightarrow answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES.

Proposition

If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

This is a Karp reduction.

Composing polynomials...

A quick reminder
(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $f(n)=O\left(n^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(9) Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder
(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=O\left(\boldsymbol{n}^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
((Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=O\left(\boldsymbol{n}^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right)$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
((Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=O\left(\boldsymbol{n}^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
((Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=O\left(\boldsymbol{n}^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(- Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=O\left(\boldsymbol{n}^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(- Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $f(n)=O\left(n^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
a, b, c, d : constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(4) Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition

$X \leq_{P} Y$ and $Y \leq_{P} Z$ implies that $X \leq_{P} Z$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $X \leq_{P} Y$ you need to show a reduction FROM X TO
(3) ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}

Transitivity of Reductions

Proposition

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{P} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{P} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO Y
(8) ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}

Transitivity of Reductions

Proposition

$\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{P} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{P} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO Y
© ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.
2.2: Independent Set and Vertex Cover

Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices \boldsymbol{S} is:

Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices \boldsymbol{S} is:
(1) A vertex cover if every $e \in \boldsymbol{E}$ has at least one endpoint in \boldsymbol{S}.

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer \boldsymbol{k}.
Goal: Is there a vertex cover of size $\leq \boldsymbol{k}$ in \mathbf{G} ?

Can we relate Independent Set and Vertex Cover?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph \mathbf{G} and integer \boldsymbol{k}.
Goal: Is there a vertex cover of size $\leq \boldsymbol{k}$ in \mathbf{G} ?
Can we relate Independent Set and Vertex Cover?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be a graph.
\boldsymbol{S} is an independent set $\Longleftrightarrow \boldsymbol{V} \backslash \boldsymbol{S}$ is a vertex cover.

Proof.

(\Rightarrow) Let \boldsymbol{S} be an independent set
(1) Consider any edge $\boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}$.
(2) Since \boldsymbol{S} is an independent set, either $\boldsymbol{u} \notin \boldsymbol{S}$ or $\boldsymbol{v} \notin \boldsymbol{S}$.
(3) Thus, either $\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}$ or $\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}$.
(0) $V \backslash S$ is a vertex cover.
(\Leftarrow) Let $\boldsymbol{V} \backslash \boldsymbol{S}$ be some vertex cover:
(1) Consider $u, v \in S$
(2) $\boldsymbol{u} \boldsymbol{v}$ is not an edge of \mathbf{G}, as otherwise $\boldsymbol{V} \backslash \boldsymbol{S}$ does not cover $\boldsymbol{u} \boldsymbol{v}$.
(3 $\Longrightarrow S$ is thus an independent set.

Independent Set \leq_{P} Vertex Cover

(1) (G, $\boldsymbol{k})$: instance of the Independent Set problem. G : graph with n vertices. k : integer.
(2) G has an independent set of size $\geq k$ $\Longleftrightarrow G$ has a vertex cover of size $\leq n-k$
($\boldsymbol{G}, \boldsymbol{k}$) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.

(ㄷ) We conclude:

(1) Independent Set \leq_{p} Vertex Cover.
(2) Vertex Cover \leq_{P} Independent Set. (Because same reduction works in other direction.)

Independent Set \leq_{P} Vertex Cover

(1) (G, $\boldsymbol{k})$: instance of the Independent Set problem. G : graph with n vertices. k : integer.
(2) G has an independent set of size $\geq k$ $\Longleftrightarrow G$ has a vertex cover of size $\leq \boldsymbol{n} \boldsymbol{- k}$

- (G, k) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.

- We conclude:

- Independent Set \leq_{P} Vertex Cover
© Vertex Cover \leq_{P} Independent Set.
(Because same reduction works in other direction.)

Independent Set \leq_{P} Vertex Cover

(1) (G, $\boldsymbol{k})$: instance of the Independent Set problem. G : graph with n vertices. k : integer.
(2) G has an independent set of size $\geq \boldsymbol{k}$ $\Longleftrightarrow G$ has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(0) $(\boldsymbol{G}, \boldsymbol{k})$ is an instance of Independent Set, and $(\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k})$ is an instance of Vertex Cover with the same answer.

- We conclude:
- Independent Set \leq_{P} Vertex Cover.
(c) Vertex Cover \leq_{P} Independent Set. (Because same reduction works in other direction.)

Independent Set \leq_{P} Vertex Cover

(1) (G, $\boldsymbol{k})$: instance of the Independent Set problem. G : graph with n vertices. k : integer.
(2) G has an independent set of size $\geq \boldsymbol{k}$ $\Longleftrightarrow G$ has a vertex cover of size $\leq n-k$
(0) $(\boldsymbol{G}, \boldsymbol{k})$ is an instance of Independent Set, and $(\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k})$ is an instance of Vertex Cover with the same answer.
(1) We conclude:

- Independent Set \leq_{P} Vertex Cover
© Vertex Cover \leq_{P} Independent Set. (Because same reduction works in other direction.)

Independent Set \leq_{P} Vertex Cover

(1) (G, \boldsymbol{k}): instance of the Independent Set problem. G : graph with n vertices. k : integer.
(2) G has an independent set of size $\geq \boldsymbol{k}$ $\Longleftrightarrow G$ has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(0) (G, k) is an instance of Independent Set, and ($\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k}$) is an instance of Vertex Cover with the same answer.
(1) We conclude:
(1) Independent Set \leq_{P} Vertex Cover.
(2) Vertex Cover \leq_{P} Independent Set. (Because same reduction works in other direction.)

Independent Set \leq_{P} Vertex Cover

(1) (G, \boldsymbol{k}): instance of the Independent Set problem. G : graph with n vertices. k : integer.
(2) G has an independent set of size $\geq k$ $\Longleftrightarrow G$ has a vertex cover of size $\leq n-k$
(0) (G, k) is an instance of Independent Set, and $(\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k})$ is an instance of Vertex Cover with the same answer.
(1) We conclude:
(1) Independent Set \leq_{P} Vertex Cover.
(2) Vertex Cover \leq_{P} Independent Set.
(Because same reduction works in other direction.)

2.3: Vertex Cover and Set Cover

The Set Cover Problem

Problem (Set Cover)

Input: Given a set \boldsymbol{U} of \boldsymbol{n} elements, a collection $S_{1}, S_{2}, \ldots S_{m}$ of subsets of \boldsymbol{U}, and an integer \boldsymbol{k}.
Goal: Is there a collection of at most k of these sets S_{i} whose union is equal to \boldsymbol{U} ?

Example
Let $U=\{1,2,3,4,5,6,7\}, k=2$ with

The Set Cover Problem

Problem (Set Cover)

Input: Given a set \boldsymbol{U} of \boldsymbol{n} elements, a collection $S_{1}, S_{2}, \ldots S_{m}$ of subsets of \boldsymbol{U}, and an integer \boldsymbol{k}.
Goal: Is there a collection of at most \boldsymbol{k} of these sets S_{i} whose union is equal to \boldsymbol{U} ?

Example

Let $U=\{1,2,3,4,5,6,7\}, k=2$ with

$$
\begin{array}{ll}
S_{1}=\{3,7\} & S_{2}=\{3,4,5\} \\
S_{3}=\{1\} & S_{4}=\{2,4\} \\
S_{5}=\{5\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

$\left\{S_{2}, S_{6}\right\}$ is a set cover

The Set Cover Problem

Problem (Set Cover)

Input: Given a set \boldsymbol{U} of \boldsymbol{n} elements, a collection $S_{1}, S_{2}, \ldots S_{m}$ of subsets of \boldsymbol{U}, and an integer \boldsymbol{k}.
Goal: Is there a collection of at most \boldsymbol{k} of these sets $\boldsymbol{S}_{\boldsymbol{i}}$ whose union is equal to \boldsymbol{U} ?

Example

$$
\text { Let } U=\{1,2,3,4,5,6,7\}, k=2 \text { with }
$$

$$
\begin{array}{ll}
S_{1}=\{3,7\} & S_{2}=\{3,4,5\} \\
S_{3}=\{1\} & S_{4}=\{2,4\} \\
S_{5}=\{5\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

$\left\{S_{2}, S_{6}\right\}$ is a set cover

Vertex Cover \leq_{P} Set Cover

(1) Instance of Vertex Cover: $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and integer \boldsymbol{k}.
(2) Construct an instance of Set Cover as follows:
(1) Number \boldsymbol{k} for the Set Cover instance is the same as the number \boldsymbol{k} given for the Vertex Cover instance.
(3) Observe that G has vertex cover of size k if and only if $U,\left\{S_{v}\right\}_{v \in V}$ has a set cover of size k.

Vertex Cover \leq_{P} Set Cover

(1) Instance of Vertex Cover: $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and integer \boldsymbol{k}.
(2) Construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- Observe that \mathbf{G} has vertex cover of size \boldsymbol{k} if and only if $U,\left\{S_{v}\right\}_{v \in V}$ has a set cover of size k.

Vertex Cover \leq_{P} Set Cover

(1) Instance of Vertex Cover: $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and integer \boldsymbol{k}.
(2) Construct an instance of Set Cover as follows:

- Number \boldsymbol{k} for the Set Cover instance is the same as the number \boldsymbol{k} given for the Vertex Cover instance.
(2) $U=\mathrm{E}$.
© Observe that G has vertex cover of size k if and only if $U,\left\{S_{v}\right\}_{v \in V}$ has a set cover of size k.

Vertex Cover \leq_{P} Set Cover

(1) Instance of Vertex Cover: $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and integer \boldsymbol{k}.
(2) Construct an instance of Set Cover as follows:

- Number \boldsymbol{k} for the Set Cover instance is the same as the number \boldsymbol{k} given for the Vertex Cover instance.
(2) $U=\mathrm{E}$.
- We will have one set corresponding to each vertex;

$$
S_{v}=\{e \mid e \text { is incident on } v\} .
$$

(0) Observe that \mathbf{G} has vertex cover of size \boldsymbol{k} if and only if $\boldsymbol{U},\left\{\boldsymbol{S}_{\boldsymbol{v}}\right\}_{v \in \boldsymbol{V}}$ has a set cover of size \boldsymbol{k}. (Exercise: Prove this.)

Vertex Cover \leq_{P} Set Cover: Example

$\{3,6\}$ is a vertex cover

Vertex Cover \leq_{P} Set Cover: Example

$$
\begin{aligned}
& \text { Let } \boldsymbol{U}=\{a, b, c, d, e, f, g\} \\
& k=2 \text { with }
\end{aligned}
$$

$$
S_{1}=\{c, g\} \quad S_{2}=\{b, d\}
$$

$$
S_{3}=\{c, d, e\} \quad S_{4}=\{e, f\}
$$

$$
S_{5}=\{a\}
$$

$$
S_{6}=\{a, b, f, g\}
$$

$$
\left\{S_{3}, S_{6}\right\} \text { is a set cover }
$$

$\{3,6\}$ is a vertex cover

Vertex Cover \leq_{P} Set Cover: Example

$$
\text { Let } U=\{a, b, c, d, e, f, g\}
$$

$$
k=2 \text { with }
$$

$$
S_{1}=\{c, g\} \quad S_{2}=\{b, d\}
$$

$$
S_{3}=\{c, d, e\} \quad S_{4}=\{e, f\}
$$

$$
S_{5}=\{a\}
$$

$$
S_{6}=\{a, b, f, g\}
$$

$\left\{S_{3}, S_{6}\right\}$ is a set cover
$\{3,6\}$ is a vertex cover

Proving Reductions

To prove that $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ you need to give an algorithm \mathcal{A} that:
(1) Transforms an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} into an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) Satisfies the property that answer to I_{X} is YES $\Longleftrightarrow I_{Y}$ is YES.
(1) typical easy direction to prove: answer to I_{Y} is YES if answer to $I_{\boldsymbol{X}}$ is YES
(2) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to \boldsymbol{I}_{Y} is NO).
(3) Runs in polynomial time.

Summary

(1) polynomial-time reductions.
(1) If $X \leq_{P} Y+$ have efficient algorithm for Y
\Longrightarrow efficient algorithm for \boldsymbol{X}.
(2) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ no efficient algorithm for X
\Longrightarrow no efficient algorithm for Y.
(2) Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

Summary

(1) polynomial-time reductions.
(1) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ have efficient algorithm for \boldsymbol{Y}
\Longrightarrow efficient algorithm for \boldsymbol{X}.
(3) If $\boldsymbol{X} \leq_{P} Y+$ no efficient algorithm for \boldsymbol{X} \Longrightarrow nO efficient algorithm for \boldsymbol{Y}.
(- Examples of reductions between Indenendent Set, Clique, Vertex Cover, and Set Cover.

Summary

(1) polynomial-time reductions.
(1) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ have efficient algorithm for \boldsymbol{Y}
\Longrightarrow efficient algorithm for \boldsymbol{X}.
(2) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ no efficient algorithm for \boldsymbol{X}
\Longrightarrow no efficient algorithm for \boldsymbol{Y}.
(2) Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

Summary

(1) polynomial-time reductions.
(1) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ have efficient algorithm for \boldsymbol{Y}
\Longrightarrow efficient algorithm for \boldsymbol{X}.
(2) If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}+$ no efficient algorithm for \boldsymbol{X}
\Longrightarrow no efficient algorithm for \boldsymbol{Y}.
(2) Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

2.4: The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{\boldsymbol{n}}$.
(1) literal: boolean variable $\boldsymbol{x}_{\boldsymbol{i}}$ or its negation $\neg \boldsymbol{x}_{\boldsymbol{i}}$ (also written as $\overline{x_{i}}$).
(2) clause: a disjunction of literals. Example: $\boldsymbol{x}_{\boldsymbol{1}} \vee \boldsymbol{x}_{\boldsymbol{2}} \vee \neg \boldsymbol{x}_{\mathbf{4}}$.
(3) conjunctive normal form (CNF) $=$ propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{1}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
(- A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but
$\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

Propositional Formulas

Definition

Consider a set of boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{\boldsymbol{n}}$.
(1) literal: boolean variable $\boldsymbol{x}_{\boldsymbol{i}}$ or its negation $\neg \boldsymbol{x}_{\boldsymbol{i}}$ (also written as $\overline{x_{i}}$).
(2) clause: a disjunction of literals. Example: $\boldsymbol{x}_{\boldsymbol{1}} \vee \boldsymbol{x}_{\boldsymbol{2}} \vee \neg \boldsymbol{x}_{\boldsymbol{4}}$.
(3) conjunctive normal form (CNF) $=$ propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.

Propositional Formulas

Definition

Consider a set of boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{n}$.
(1) literal: boolean variable $\boldsymbol{x}_{\boldsymbol{i}}$ or its negation $\neg \boldsymbol{x}_{\boldsymbol{i}}$ (also written as $\overline{x_{i}}$).
(2) clause: a disjunction of literals. Example: $\boldsymbol{x}_{\boldsymbol{1}} \vee \boldsymbol{x}_{\boldsymbol{2}} \vee \neg \boldsymbol{x}_{\boldsymbol{4}}$.
(3) conjunctive normal form (CNF) $=$ propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
(9) A formula φ is a 3 CNF :

A CNF formula such that every clause has exactly 3 literals.
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

Satisfiability

SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT

Given a 3 CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT Given a 3 CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT

Given a 3 CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT

Given a 3CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
(More on 2SAT in a bit...)

Importance of SAT and 3SAT

(1) SAT, 3SAT: basic constraint satisfaction problems.
(2) Many different problems can reduced to them: simple+powerful expressivity of constraints.
(3) Arise in many hardware/software verification/correctness applications.
(4) ... fundamental problem of NP-Completeness.
2.4.1: Converting a boolean formula with 3 variables to 3SAT

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$\|\|l\| l\| l \mid l$		
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y}$			
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| z | x | y | $z=x \wedge y$ | $z \vee \bar{x} \vee \bar{y}$ | $\bar{z} \vee x \vee y$ | $\bar{z} \vee x \vee \bar{y}$ | $\bar{z} \vee \bar{x} \vee 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee 3$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

$$
\begin{aligned}
& (z=x \wedge y) \\
& \equiv \\
& (z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee \boldsymbol{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\bar{z} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})
\end{aligned}
$$

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	\mid
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=\boldsymbol{x} \wedge \boldsymbol{y}$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$z \vee \bar{x} \vee \bar{y}$
1	0	0	0	$\bar{z} \vee x \vee y$
1	0	1	0	$\bar{z} \vee x \vee y$
1	1	0	0	$\bar{z} \vee x \vee y$
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$z \vee \bar{x} \vee \bar{y}$
1	0	0	0	$\bar{z} \vee x \vee y$
1	0	1	0	$\bar{z} \vee x \vee y$
1	1	0	0	$\bar{z} \vee x \vee y$
1	1	1	1	

$$
\begin{aligned}
& (z=x \wedge y) \\
& \equiv
\end{aligned}
$$

$$
(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)
$$

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to
(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

(2) Using the above two observation, we have that our formula $\psi \equiv$ $(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)$ is equivalent to $\psi \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Lemma

$(z=x \wedge y) \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to
(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:
(1) $(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x)$
(2) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y})=(\bar{z} \vee \boldsymbol{y})$
(2) Using the above two observation, we have that our formula $\psi \equiv$ $(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Lemma

$(z=x \wedge y) \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:
(1) $(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x)$
(2) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y})=(\bar{z} \vee \boldsymbol{y})$
(2) Using the above two observation, we have that our formula $\psi \equiv$ $(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Lemma

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:
(1) $(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x)$
(2) $(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \bar{x} \vee \boldsymbol{y})=(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$
(2) Using the above two observation, we have that our formula $\psi \equiv$ $(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

Lemma

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:

$$
\begin{aligned}
& (\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x) \\
& \text { (2) }(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y)=(\bar{z} \vee y)
\end{aligned}
$$

(2) Using the above two observation, we have that our formula $\psi \equiv$ $(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

Lemma

$(z=x \wedge y) \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

z	x	y	$\mid l$	
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

z	x	y	$z=x \vee y$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

z	x	y	$z=x \vee y$	clauses
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$	clauses
0	0	0	1	
0	0	1	0	$z \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}$
0	1	0	0	$\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y}$
0	1	1	0	$\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}$
1	0	0	0	$\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}$
1	0	1	1	
1	1	0	1	
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$	clauses
$\mathbf{0}$	0	0	1	
$\mathbf{0}$	0	1	0	$\boldsymbol{z} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}$
0	1	0	0	$\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y}$
0	1	1	0	$\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}$
1	0	0	0	$\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}$
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$
\begin{aligned}
& (z=x \vee y) \\
& \equiv
\end{aligned}
$$

$$
(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y})
$$

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
© $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.

(2) Using the above two observation, we have the following.

Lemma

The formula $z=x \vee y$ is equivalent to the CNF formula
\square

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:
(1) $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.
(2) $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}$
(2) Using the above two observation, we have the following.

Lemma

The formula $z=x \vee y$ is equivalent to the CNF formula

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

$$
\begin{aligned}
& \text { (1) }(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y} . \\
& \text { (2) }(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}
\end{aligned}
$$

(2) Using the above two observation, we have the following.

Lemma

The formula $z=x \vee y$ is equivalent to the CNF formula

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

$$
\begin{aligned}
& \text { (1) }(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y} \\
& \text { (1) }(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}
\end{aligned}
$$

(2) Using the above two observation, we have the following.

Lemma

The formula $\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$ is equivalent to the CNF formula $(z=x \vee y) \equiv(z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y)$

Converting $z=\bar{x}$ to

Lemma

$$
z=\bar{x} \quad \equiv \quad(z \vee x) \wedge(\bar{z} \vee \bar{x}) .
$$

Converting into CNF: summary

Lemma

$$
\begin{array}{rll}
z=\bar{x} & \equiv & (z \vee x) \wedge(\bar{z} \vee \bar{x}) \\
z=\boldsymbol{x} \vee \boldsymbol{y} & \equiv & (z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y) \\
z=\boldsymbol{x} \wedge \boldsymbol{y} & \equiv & (z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)
\end{array}
$$

Exercise...

- Given:
(1) $f\left(x_{1}, \ldots, x_{d}\right)$ a boolean function
(2) Formally: $f:\{0,1\}^{d} \rightarrow\{0,1\}$.
(2) Prove that there is CNF formula that computes f.
(3) Prove that there is 3 CNF formula that computes f.

Exercise...

(1) Given:
(1) $f\left(x_{1}, \ldots, x_{d}\right)$ a boolean function
(2) Formally: $f:\{0,1\}^{d} \rightarrow\{0,1\}$.
(2) Prove that there is CNF formula that computes f.
(- Prove that there is 3 CNF formula that computes f.

Exercise...

(1) Given:

(1) $f\left(x_{1}, \ldots, x_{d}\right)$ a boolean function
(2) Formally: $f:\{0,1\}^{d} \rightarrow\{0,1\}$.
(2) Prove that there is CNF formula that computes f.
(3) Prove that there is 3 CNF formula that computes f.
2.4.2: SAT and 3SAT

SAT \leq_{P} 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: $1,2,3, \ldots$ variables:

$$
(\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z} \vee \boldsymbol{w} \vee \boldsymbol{u}) \wedge(\neg \boldsymbol{x} \vee \neg \boldsymbol{y} \vee \neg \boldsymbol{z} \vee \boldsymbol{w} \vee \boldsymbol{u}) \wedge(\neg \boldsymbol{x})
$$

In 3SAT every clause must have exactly 3 different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables.

Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF

SAT \leq_{P} 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: $1,2,3, \ldots$ variables:

$$
(\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z} \vee \boldsymbol{w} \vee \boldsymbol{u}) \wedge(\neg \boldsymbol{x} \vee \neg \boldsymbol{y} \vee \neg \boldsymbol{z} \vee \boldsymbol{w} \vee \boldsymbol{u}) \wedge(\neg \boldsymbol{x})
$$

In 3SAT every clause must have exactly 3 different literals.
Reduce from of SAT to 3SAT: make all clauses to have $\mathbf{3}$ variables...

Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF .

$3 S A T \leq_{\mathrm{P}}$ SAT

(1) 3 SAT \leq_{P} SAT.
(2) Because...

A 3SAT instance is also an instance of SAT.

SAT \leq_{P} 3SAT

Claim

SAT \leq_{P} 3SAT.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3 , replace it with several clauses of length exactly 3 .

SAT \leq_{P} 3SAT

Claim

SAT \leq_{P} 3SAT.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3 , replace it with several clauses of length exactly 3 .

SAT \leq_{P} 3SAT

Claim

SAT \leq_{P} 3SAT.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3 , replace it with several clauses of length exactly 3 .

SAT \leq_{P} 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in φ \# liters $\neq 3$.
\forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.
(1) Clause with one literal: $c=\ell$ clause with a single literal. $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

SAT \leq_{P} 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in φ \# liters $\neq 3$.
\forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.
(1) Clause with one literal: $\boldsymbol{c}=\ell$ clause with a single literal. $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & (\ell \vee \boldsymbol{u} \vee v) \wedge(\ell \vee \boldsymbol{u} \vee \neg \boldsymbol{v}) \\
& \wedge(\ell \vee \neg \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \neg \boldsymbol{u} \vee \neg \boldsymbol{v}) .
\end{aligned}
$$

SAT \leq_{P} 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in $\varphi \#$ liters $\neq 3$.
\forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.
(1) Clause with one literal: $\boldsymbol{c}=\ell$ clause with a single literal. $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

$$
\begin{aligned}
\boldsymbol{c}^{\prime}= & (\ell \vee \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \boldsymbol{u} \vee \neg \boldsymbol{v}) \\
& \wedge(\ell \vee \neg \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \neg \boldsymbol{u} \vee \neg \boldsymbol{v}) .
\end{aligned}
$$

Observe: \boldsymbol{c}^{\prime} satisfiable $\Longleftrightarrow \boldsymbol{c}$ is satisfiable

SAT \leq_{P} 3SAT

A clause with two literals

Reduction Ideas: 2 and more literals

(1) Case clause with 2 literals: Let $\boldsymbol{c}=\boldsymbol{\ell}_{1} \vee \boldsymbol{\ell}_{2}$. Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

c is satisfiable $\Longleftrightarrow c^{\prime}$ is satisfiable

Breaking a clause

Lemma

For any boolean formulas \boldsymbol{X} and \boldsymbol{Y} and \boldsymbol{z} a new boolean variable. Then

$$
\boldsymbol{X} \vee \boldsymbol{Y} \text { is satisfiable }
$$

if and only if, \boldsymbol{z} can be assigned a value such that

$$
(X \vee z) \wedge(Y \vee \neg z) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in \boldsymbol{X} and \boldsymbol{Y}).

SAT $\leq_{\mathrm{P}} 3 \mathrm{SAT}$ (contd)

Clauses with more than 3 literals

Let $\boldsymbol{c}=\boldsymbol{\ell}_{1} \vee \cdots \vee \boldsymbol{\ell}_{\boldsymbol{k}}$. Let $\boldsymbol{u}_{\boldsymbol{1}}, \ldots \boldsymbol{u}_{\boldsymbol{k}-\mathbf{3}}$ be new variables. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge\left(\ell_{3} \vee \neg u_{1} \vee u_{2}\right)
$$

$$
\wedge\left(\ell_{4} \vee \neg u_{2} \vee u_{3}\right) \wedge
$$

$$
\cdots \wedge\left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
$$

Claim

c is satisfiable $\longleftrightarrow c^{\prime}$ is satisfiable.
Another way to see it - reduce size clause by one \& repeat

$\mathrm{SAT} \leq_{\mathrm{P}} 3 \mathrm{SAT}$ (contd)

Clauses with more than 3 literals

Let $\boldsymbol{c}=\ell_{1} \vee \cdots \vee \boldsymbol{\ell}_{\boldsymbol{k}}$. Let $\boldsymbol{u}_{\boldsymbol{1}}, \ldots \boldsymbol{u}_{\boldsymbol{k}-\boldsymbol{3}}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge\left(\ell_{3} \vee \neg u_{1} \vee u_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg u_{2} \vee u_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
\end{aligned}
$$

Claim

\boldsymbol{c} is satisfiable $\Longleftrightarrow \boldsymbol{c}^{\prime}$ is satisfiable.
Another way to see it _ reduce size clause by one \& repeat

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
$$

$\mathrm{SAT} \leq_{\mathrm{P}} 3 \mathrm{SAT}$ (contd)

Clauses with more than 3 literals

Let $\boldsymbol{c}=\ell_{1} \vee \cdots \vee \boldsymbol{\ell}_{\boldsymbol{k}}$. Let $\boldsymbol{u}_{\boldsymbol{1}}, \ldots \boldsymbol{u}_{\boldsymbol{k}-\boldsymbol{3}}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge\left(\ell_{3} \vee \neg u_{1} \vee u_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg u_{2} \vee u_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
\end{aligned}
$$

Claim

\boldsymbol{c} is satisfiable $\Longleftrightarrow \boldsymbol{c}^{\prime}$ is satisfiable.
Another way to see it - reduce size clause by one \& repeat:

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(\boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(\boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}}\right) \\
& \wedge\left(\neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}} \vee \boldsymbol{y}_{\mathbf{1}}\right) \wedge\left(\boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{y}_{\mathbf{1}}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right)
\end{aligned}
$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

ReduceSATTo3SAT (φ) :

// φ : CNF formula.
for each clause c of φ do
if c does not have exactly 3 literals then construct c^{\prime} as before
else

$$
c^{\prime}=c
$$

ψ is conjunction of all c^{\prime} constructed in loop return Solver3SAT (ψ)

Correctness (informal)

φ is satisfiable $\Longleftrightarrow \psi$ satisfiable

Overall Reduction Algorithm

Reduction from SAT to 3SAT

ReduceSATTo3SAT (φ) :

// φ : CNF formula.
for each clause \boldsymbol{c} of φ do
if \boldsymbol{c} does not have exactly 3 literals then construct \boldsymbol{c}^{\prime} as before
else

$$
c^{\prime}=c
$$

ψ is conjunction of all \boldsymbol{c}^{\prime} constructed in loop return Solver3SAT (ψ)

Correctness (informal)

φ is satisfiable $\Longleftrightarrow \psi$ satisfiable
$\ldots \forall c \in \varphi$: new 3CNF formula \boldsymbol{c}^{\prime} is equivalent to \boldsymbol{c}.

What about 2SAT?

(1) 2SAT can be solved in poly time! (specifically, linear time!)
(2) No poly time reduction from SAT (or 3SAT) to 2SAT
(3) If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT falls?

$(\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z})$: clause.
convert to collection of 2 CNF clauses. Introduce a fake variable α, and rewrite this as

$$
\begin{array}{lll}
& (\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \boldsymbol{z}) & \text { (bad! clause with } 3 \text { vars) } \\
\text { or } & (\boldsymbol{x} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \boldsymbol{y} \vee \boldsymbol{z}) & \text { (bad! clause with } 3 \text { vars). }
\end{array}
$$

What about 2SAT?

(1) 2SAT can be solved in poly time! (specifically, linear time!)
(2) No poly time reduction from SAT (or 3SAT) to 2SAT.
(3) If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

$(x \vee \boldsymbol{y} \vee z):$ clause
convert to collection of 2 CNF clauses. Introduce a fake variable α, and rewrite this as

$$
\begin{array}{lll}
& (\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \boldsymbol{z}) & \text { (bad! clause with } 3 \text { vars) } \\
\text { or } & (\boldsymbol{x} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \boldsymbol{y} \vee \boldsymbol{z}) & \text { (bad! clause with } 3 \text { vars). }
\end{array}
$$

What about 2SAT?

(1) 2SAT can be solved in poly time! (specifically, linear time!)
(2) No poly time reduction from SAT (or 3SAT) to 2SAT.
(3) If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

$(\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z})$: clause.
convert to collection of 2 CNF clauses. Introduce a fake variable α,
and rewrite this as

[^0]
What about 2SAT?

(1) 2SAT can be solved in poly time! (specifically, linear time!)
(2) No poly time reduction from SAT (or 3SAT) to 2SAT.
(3) If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

($\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z}$): clause.
convert to collection of 2 CNF clauses. Introduce a fake variable α, and rewrite this as

$$
(x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) \quad \text { (bad! clause with } 3 \text { vars) }
$$

or $(\boldsymbol{x} \vee \boldsymbol{\alpha}) \wedge(\neg \boldsymbol{\alpha} \vee \boldsymbol{y} \vee \boldsymbol{z}) \quad$ (bad! clause with 3 vars). (In animal farm language: 2SAT good, 3SAT bad.)

What about 2SAT?

(1) 2SAT can be solved in poly time! (specifically, linear time!)
(2) No poly time reduction from SAT (or 3SAT) to 2SAT.
(0) If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

$(\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z}$): clause.
convert to collection of 2 CNF clauses. Introduce a fake variable α, and rewrite this as

$$
\begin{array}{ll}
(x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) & \text { (bad! clause with } 3 \text { vars) } \\
(x \vee \alpha) \wedge(\neg \alpha \vee y \vee z) & \text { (bad! clause with } 3 \text { vars). }
\end{array}
$$

(In animal farm language: 2SAT good, 3SAT bad.)
2.4.3: Reducing 3SAT to Independent Set

Independent Set

Independent Set

Instance: A graph G, integer \boldsymbol{k}.
Question: Is there an independent set in \mathbf{G} of size \boldsymbol{k} ?

$3 S A T \leq{ }_{\mathrm{P}}$ Independent Set

The reduction $3 \mathrm{SAT} \leq_{\mathrm{P}}$ Independent Set

Input: Given a 3 CNF formula φ
Goal: Construct a graph \boldsymbol{G}_{φ} and number \boldsymbol{k} such that \boldsymbol{G}_{φ} has an independent set of size \boldsymbol{k} if and only if $\boldsymbol{\varphi}$ is satisfiable.
(1) Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
(2) Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas)

$3 S A T \leq_{\mathrm{p}}$ Independent Set

The reduction $3 \mathrm{SAT} \leq_{\mathrm{P}}$ Independent Set

Input: Given a 3 CNF formula φ
Goal: Construct a graph \boldsymbol{G}_{φ} and number \boldsymbol{k} such that \boldsymbol{G}_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ
(1) Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
boolean formulas)

3 SAT \leq_{p} Independent Set

The reduction $3 \mathrm{SAT} \leq_{\mathrm{P}}$ Independent Set

Input: Given a 3CNF formula φ
Goal: Construct a graph \boldsymbol{G}_{φ} and number \boldsymbol{k} such that \boldsymbol{G}_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable.
G_{φ} should be constructable in time polynomial in size of φ
(1) Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

3 SAT \leq_{p} Independent Set

The reduction $3 \mathrm{SAT} \leq_{\mathrm{P}}$ Independent Set

Input: Given a 3CNF formula φ
Goal: Construct a graph \boldsymbol{G}_{φ} and number \boldsymbol{k} such that \boldsymbol{G}_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable.
G_{φ} should be constructable in time polynomial in size of φ
(1) Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
(2) Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign 0/1 (false/true) to vars \Longrightarrow formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true. Use second view of 3SAT for reduction.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars \Longrightarrow formula evaluates to true. Each clause evaluates to true.
(3) Pick literal from each clause \& find assignment s.t. all true. Use second view of 3SAT for reduction.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars \Longrightarrow formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true. Use second view of 3SAT for reduction.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars \Longrightarrow formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict,
Use second view of 3SAT for reduction.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars \Longrightarrow formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick $\boldsymbol{x}_{\boldsymbol{i}}$ and $\neg \boldsymbol{x}_{\boldsymbol{i}}$

Use second view of 3SAT for reduction.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Assign $0 / 1$ (false/true) to vars \Longrightarrow formula evaluates to true. Each clause evaluates to true.
(2) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick $\boldsymbol{x}_{\boldsymbol{i}}$ and $\neg \boldsymbol{x}_{\boldsymbol{i}}$

Use second view of 3SAT for reduction.

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(Take k to be the number of clauses

Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(9) Take k to be the number of clauses

Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(9) Take k to be the number of clauses

Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(9) Take k to be the number of clauses

Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(a) Take \boldsymbol{k} to be the number of clauses

Figure: $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

Correctness

Proposition

φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ has an independent set of size \boldsymbol{k} k : number of clauses in φ.

Proof.

$\Rightarrow a$: truth assignment satisfying φ
(1) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Correctness

Proposition

φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ has an independent set of size \boldsymbol{k} k : number of clauses in φ.

Proof.

$\Rightarrow a$: truth assignment satisfying φ
(1) Pick one of the vertices, corresponding to true literals under \boldsymbol{a}, from each triangle. This is an independent set of the appropriate size

Correctness (contd)

Proposition

φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

$\Leftarrow \boldsymbol{S}$: independent set in \boldsymbol{G}_{φ} of size \boldsymbol{k}
(1) S must contain exactly one vertex from each clause
(2) S cannot contain vertices labeled by conflicting clauses
(3) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Notes

Notes

Notes

Notes

[^0]: (In animal farm language:

