NEW CS 473: Theory Il, Fall 2015

Reductions and NP

Lecture 2
August 27, 2015
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Polynomial-time reductions
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Ix Iy v

A NO

Ax

@ Algorithm is efficient if it runs in polynomial-time.
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Polynomial-time reductions
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Ix Iy v

A NO

Ax

@ Algorithm is efficient if it runs in polynomial-time.
@ Interested only in polynomial-time reductions.
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Polynomial-time reductions

YES

Ix Iy v

A NO

Ax

@ Algorithm is efficient if it runs in polynomial-time.
@ Interested only in polynomial-time reductions.

© X <p Y: Have polynomial-time reduction from problem X to
problem Y .

@ Ay poly-time algorithm for Y.
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Polynomial-time reductions

YES

Ix Iy v

A NO

Ax

@ Algorithm is efficient if it runs in polynomial-time.
@ Interested only in polynomial-time reductions.

© X <p Y: Have polynomial-time reduction from problem X to
problem Y .

@ Ay poly-time algorithm for Y.
©@ —> Polynomial-time/efficient algorithm for X.
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2.1: Polynomial time reductions
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Polynomial-time reductions and instance sizes

Proposition

R: a polynomial-time reduction from X toY .

Then, for any instance Ix of X, the size of the instance Iy of Y
produced from Ix by R is polynomial in the size of Ix.
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Polynomial-time reductions and instance sizes

Proposition

R: a polynomial-time reduction from X toY .
Then, for any instance Ix of X, the size of the instance Iy of Y
produced from Ix by R is polynomial in the size of Ix.

‘R is a polynomial-time algorithm and hence on input Ix of size
|Ix| it runs in time p(|Ix|) for some polynomial p().

Iy is the output of R on input Ix.

R can write at most p(|Ix|) bits and hence |Iy| < p(|Ix]|). O
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Polynomial-time reductions and instance sizes

Proposition

R: a polynomial-time reduction from X toY .

Then, for any instance Ix of X, the size of the instance Iy of Y
produced from Ix by R is polynomial in the size of Ix.

‘R is a polynomial-time algorithm and hence on input Ix of size
|Ix| it runs in time p(|Ix|) for some polynomial p().

Iy is the output of R on input Ix.

R can write at most p(|Ix|) bits and hence |Iy| < p(|Ix]|). O

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.
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Polynomial-time Reduction

X <p Y: polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

© Given an instance Ix of X, A produces an instance Iy of Y.
@ A runs in time polynomial in |Ix|. (|Iy| = size of Iy).
© Answer to Ix YES <= answer to Iy is YES.
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Polynomial-time Reduction

X <p Y: polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

© Given an instance Ix of X, A produces an instance Iy of Y.
@ A runs in time polynomial in |Ix|. (|Iy| = size of Iy).
© Answer to Ix YES <= answer to Iy is YES.

Proposition

If X <p Y then a polynomial time algorithm for' Y implies a
polynomial time algorithm for X .
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Polynomial-time Reduction

X <p Y: polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

© Given an instance Ix of X, A produces an instance Iy of Y.
@ A runs in time polynomial in |Ix|. (|Iy| = size of Iy).
© Answer to Ix YES <= answer to Iy is YES.

Proposition
If X <p Y then a polynomial time algorithm for' Y implies a
polynomial time algorithm for X .

This is a Karp reduction.
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:
® f(n) <axnb (e, f(n) = O(n?))
@ g(n) < cxnd (ie. g(n) = O(n))
a, b, c,d: constants.
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:

0 f(n) <axnb (i.e., f(n) = O(nb))
@ g(n) <cxnd (i.e., g(n) = O(n?))
a, b, c,d: constants.
(=) g(f(ﬂ)) <
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:
® f(n) <axnb (e, f(n) = O(n?))
@ g(n) < cxnd (ie. g(n) = O(n))
a, b, c,d: constants.
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:
® f(n) <axnb (e, f(n) = O(n?))
@ g(n) < cxnd (ie. g(n) = O(n))
a, b, c,d: constants.

° g(f(n)) < g(a*n’) <cx*(axnb)*
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:
® f(n) <axnb (e, f(n) = O(n?))
@ g(n) < cxnd (ie. g(n) = O(n))
a, b, c,d: constants.

(2] g(f(n)) < g(a *nb) Sc*(a*nb)dsc_ad*nbd
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:
® f(n) <axnb (e, f(n) = O(n?))
@ g(n) < cxnd (ie. g(n) = O(n))
a, b, c,d: constants.

(2] g(f(n)) < g(a *nb) Sc*(a*nb)dsc_ad*nbd

Q@ — g(f(n)) = O<nbd> is a polynomial.
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Composing polynomials...

A quick reminder

© f and g monotone increasing. Assume that:
® f(n) <axnb (e, f(n) = O(n?))
@ g(n) < cxnd (ie. g(n) = O(n))
a, b, c,d: constants.

(2] g(f(n)) < g(a *nb) Sc*(a*nb)dsc_ad*nbd

Q@ — g(f(n)) = O<nbd> is a polynomial.

@ Conclusion: Composition of two polynomials, is a
polynomial.
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Transitivity of Reductions

Proposition
X <pY andY <p Z implies that X <p Z.

Q@ Note: X <p Y does not imply that Y <p X and hence it is
very important to know the FROM and TO in a reduction.
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Transitivity of Reductions

Proposition
X <pY andY <p Z implies that X <p Z.

Q@ Note: X <p Y does not imply that Y <p X and hence it is
very important to know the FROM and TO in a reduction.

@ To prove X <p Y you need to show a reduction FROM X TO
Y

Sariel (UIUC) New CS473 Fall 2015 8 /44



Transitivity of Reductions

Proposition
X <pY andY <p Z implies that X <p Z.

Q@ Note: X <p Y does not imply that Y <p X and hence it is
very important to know the FROM and TO in a reduction.

@ To prove X <p Y you need to show a reduction FROM X TO
Y

© ...show that an algorithm for Y implies an algorithm for X.
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2.2: Independent Set and Vertex
Cover
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Vertex Cover

Given a graph G = (V,, E), a set of vertices S is:
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Vertex Cover

Given a graph G = (V,, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size < k in G?
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size < k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...

Vertex Cover and Independent Set
Proposition
Let G = (V, E) be a graph.

S is an independent set <—=> V \ S is a vertex cover.

(=) Let S be an independent set
@ Consider any edge uv € E.
@ Since S is an independent set, either u € Sorv &€ S.
© Thus, eitheru € V\ Sorv eV \ S.
O V \ S is a vertex cover.
(<) Let V' \ S be some vertex cover:
O Consider u,v € S
@ ww is not an edge of G, as otherwise V' \ S does not cover uv.
©® — S is thus an independent set. O

v

Sariel (UIUC) New CS473 12 Fall 2015 12 / 44



Independent Set <p Vertex Cover

Q@ (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.
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Independent Set <p Vertex Cover

Q@ (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

@ G has an independent set of size > k
<= G has a vertex cover of size < n — k
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Independent Set <p Vertex Cover

Q@ (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

@ G has an independent set of size > k
<= G has a vertex cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G,n — k) is
an instance of Vertex Cover with the same answer.
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Independent Set <p Vertex Cover

Q@ (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

@ G has an independent set of size > k
<= G has a vertex cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G,n — k) is
an instance of Vertex Cover with the same answer.

@ We conclude:
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Independent Set <p Vertex Cover

Q@ (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

@ G has an independent set of size > k
<= G has a vertex cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G,n — k) is
an instance of Vertex Cover with the same answer.

@ We conclude:
0 Independent Set <p Vertex Cover.
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Independent Set <p Vertex Cover

Q@ (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

@ G has an independent set of size > k
<= G has a vertex cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G,n — k) is
an instance of Vertex Cover with the same answer.

© We conclude:

0 Independent Set <p Vertex Cover.
@ Vertex Cover <p Independent Set.
(Because same reduction works in other direction.)
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2.3: Vertex Cover and Set Cover
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The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S, S2,...S,, of
subsets of U, and an integer k.

Goal: /s there a collection of at most k of these sets S; whose union
is equal to U ?
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The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S, S2,...S,, of
subsets of U, and an integer k.

Goal: /s there a collection of at most k of these sets S; whose union
is equal to U ?

’

Example
Let U = {1,2,3,4,5,6,7}, k = 2 with

S, = {35 7} Sy = {3’ 4, 5}
Ss={1} Si={2,4}
85 - {5} SG — {172a6’ 7}

v
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The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S, S2,...S,, of
subsets of U, and an integer k.

Goal: /s there a collection of at most k of these sets S; whose union
is equal to U ?

’

Example
Let U = {1,2,3,4,5,6,7}, k = 2 with

S, = {35 7} Sy = {3’ 4, 5}
Ss={1}  Si={2,4}
85 - {5} SG = {172967 7}

{S2, Se} is a set cover
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Vertex Cover <p Set Cover

© Instance of Vertex Cover: G = (V, E) and integer k.
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Vertex Cover <p Set Cover

© Instance of Vertex Cover: G = (V, E) and integer k.
@ Construct an instance of Set Cover as follows:
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Vertex Cover <p Set Cover

© Instance of Vertex Cover: G = (V, E) and integer k.
@ Construct an instance of Set Cover as follows:

@ Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.
e U=E.
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Vertex Cover <p Set Cover

© Instance of Vertex Cover: G = (V, E) and integer k.
@ Construct an instance of Set Cover as follows:
@ Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.
@ U=E.
©® We will have one set corresponding to each vertex;
S, = {e| e is incident on v}.
© Observe that G has vertex cover of size k if and only if
U, {S,}vev has a set cover of size k. (Exercise: Prove this.)
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Vertex Cover <p Set Cover: Example
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Vertex Cover <p Set Cover: Example

Sariel (UIUC)

New CS473

Let U = {a,b,c,d,e, f,g},

S, = {C, g} Sy = {b7 d}
S3:{C,d,e} S4={€,f}
S5 = {a} S¢ = {a,b, f,g]
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Vertex Cover <p Set Cover: Example

Let U = {a,b,c,d,E,f,g},
k = 2 with

S1 ={ec, g} Sz = {b,d}
53:{cadae} S4:{€,f}
Ss = {a} S¢ = {a,b, f,g]

{S3, Sg} is a set cover

{3,6} is a vertex cover
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Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.

@ Satisfies the property that answer to I'x is YES <= Iy is
YES.

@ typical easy direction to prove: answer to Iy is YES if answer
to Ix is YES

@ typical difficult direction to prove: answer to I'x is YES if
answer to Iy is YES (equivalently answer to I'x is NO if
answer to Iy is NO).

© Runs in polynomial time.
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Summary

© polynomial-time reductions.
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© polynomial-time reductions.

@ If X <p Y + have efficient algorithm for Y’
— efficient algorithm for X.
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© polynomial-time reductions.

@ If X <p Y + have efficient algorithm for Y’
— efficient algorithm for X.

9 If X <p Y + no efficient algorithm for X
= NO efficient algorithm for Y.
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© polynomial-time reductions.

@ If X <p Y + have efficient algorithm for Y’
— efficient algorithm for X.

9 If X <p Y + no efficient algorithm for X
= NO efficient algorithm for Y.

© Examples of reductions between Independent Set, Clique,
Vertex Cover, and Set Cover.
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2.4: The Satisfiability Problem
(SAT)




Propositional Formulas

Consider a set of boolean variables 1, €2, ... x,.

@ literal: boolean variable x; or its negation —x; (also written as
z;).

@ clause: a disjunction of literals. Example: @1 V x5 V —xy4.
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Propositional Formulas

Definition
Consider a set of boolean variables 1, €2, ... x,.

@ literal: boolean variable x; or its negation —x; (also written as
z;).

@ clause: a disjunction of literals. Example: @1 V x5 V —xy4.

@ conjunctive normal form (CNF) = propositional formula
which is a conjunction of clauses

O (w1 Va2V xy) A(x2V —3) Axsisa CNF formula.
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Propositional Formulas

Consider a set of boolean variables 1, €2, ... x,.

@ literal: boolean variable x; or its negation —x; (also written as
;).

@ clause: a disjunction of literals. Example: @1 V x5 V —xy4.

@ conjunctive normal form (CNF) = propositional formula
which is a conjunction of clauses

O (w1 Va2V xy) A(x2V —3) Axsisa CNF formula.

Q A formula ¢ is a 3CNF:

A CNF formula such that every clause has exactly 3 literals.

O (w1 Va2V xy) A(x2V 23V 1) is a 3CNF formula, but
(1 V@2 V nxg) A (22 V D3) A 5 is not.

o’

Sariel (UIUC) New CS473 21 Fall 2015 21 / 44



Satisfiability

SAT

Instance: A CNF formula ¢.
Question: Is there a truth assignment to the variable of ¢ such
that ¢ evaluates to true?

3SAT

Instance: A 3CNF formula ¢.
Question: Is there a truth assignment to the variable of ¢ such
that ¢ evaluates to true?
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Satisfiability

Given a CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?
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Satisfiability

SAT

Given a CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

Example
Q (x1 VxaV xy) A (2 V mx3) A @y is satisfiable; take
T1, X2, ...xs5 to be all true
Q (x1V x2) A (mxy V@) A (mxy V nxa) A (1 V @2) is not
satisfiable.

v
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Satisfiability

Given a CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

Q (x1 VxaV xy) A (2 V mx3) A @y is satisfiable; take
T1, X2, ...xs5 to be all true

Q (x1V x2) A (mxy V@) A (mxy V nxa) A (1 V @2) is not
satisfiable.

v

3SAT

Given a 3CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

A\

Sariel (UIUC) New CS473 23 Fall 2015 23 / 44



Satisfiability

Given a CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

Q (x1 VxaV xy) A (2 V mx3) A @y is satisfiable; take
T1, X2, ...xs5 to be all true

Q (x1V x2) A (mxy V@) A (mxy V nxa) A (1 V @2) is not
satisfiable.

v

3SAT

Given a 3CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

A\

(More on 2SAT in a bit...)
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Importance of SAT and 3SAT

@ SAT, 3SAT: basic constraint satisfaction problems.

@ Many different problems can reduced to them: simple-+powerful
expressivity of constraints.

@ Arise in many hardware/software verification /correctness
applications.

@ ... fundamental problem of NP-Completeness.
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24]. Converting a boolean formula with 3 variables
to 3SAT
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Converting z = x A\ y to 3SAT

z
0
0
0
0
1
1
1
1

=IO~ O o8
e =l el k= k=l R =1l
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Converting z = x A\ y to 3SAT

zZ T
0 O
0 O
0 1
0 1
1 0
1 0
1 1
1 1

e =l el k= k=l R =1l

H O IO OO F-
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Converting z = x A\ y to 3SAT

zZ x y\ z:m/\szVE\/g‘E\/m\/y‘ ‘ ‘
0 0 O 1 1 1 11
0 0 1 1 1 1 11
0 1 O 1 1 1 1|1
0 1 1 0 0 1 1|1
1 0 O 0 1 O 11
1 0 1 0 1 1 0|1
1 1 0 0 1 1 10
1 1 1 1 1 1 11
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Converting z = x A\ y to 3SAT

zZ y\ z:m/\yHzVE\/y‘E\/m\/y‘E\/m\/ﬂ‘ ‘
0O 0 O 1 1 1 1 1
0O 0 1 1 1 1 1 1
0O 1 O 1 1 1 1 1
0O 1 1 0 0 1 1 1
1 0 O 0 1 0 1 1
1 0 1 0 1 1 O 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x A\ y to 3SAT

z x y|l z=xzAyl|zvEvyg|zvavy|zvavy|zvaVvy
0O 0 O 1 1 1 1 1
0O 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0O 1 1 0 0 1 1 1
1 0 O 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 O
1 1 1 1 1 1 1 1
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Converting z = x A\ y to 3SAT

z x y|l z=xzAyl|zvEvyg|zvavy|zvavy|zvaVvy
0O 0 O 1 1 1 1 1
0O 0 1 1 1 1 1 1
0O 1 O 1 1 1 1 1
0O 1 1 0 0 1 1 1
1 0 O 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x A\ y to 3SAT

<
<

|zvevy|zV

<
<
Y
<
<
c~

el R K=l =] E =] R =] IR\
el = =1 =1 =]
e =l el k= k=l R =1l
OO OO M|

el e e e R = L e R [R5

RO R R == ~8
e = i e e B e |

= = O R =] =

(= nv)

(zVZEVY ANEZVaVY)AEZVaVY)A(ZVEVY)
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Converting z = x A\ y to 3SAT

e e e R K= E=] N =] N =R \]
=IO~ O o8
e =l el k= k=l R =1l
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Converting z = x A\ y to 3SAT

zZ T
0 O
0 O
0 1
0 1
1 0
1 0
1 1
1 1

e =l el k= k=l R =1l

H O IO OO F-
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Converting z = x A\ y to 3SAT

Ny H clauses ‘

- - = OO OO N
== = =l E=1E=1s]
=l =R = R =]l

~lololo|o|r R Ry
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Converting z = x A\ y to 3SAT

z T y\ z=xT ANy H clauses ‘
0 0 O 1

0 0 1 1

0 1 0 1

0 1 1 0 zVZTVyY

1 0 0 0 ZVxVy

1 0 1 0 ZVzVy

1 1 0 0 ZVxVy

1 1 1 1
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Converting z = x A\ y to 3SAT

clauses ‘

>
<

zVxVy

zVxVy

zVxVy

zZzVxVy

- - = OO OO N
== = =l E=1E=1s]
=l =R = R =]l

~lololo|o|r R Ry

(=2 n)

(;\/fvy)/\(ZV:U\/y)/\(E\/w\/y)/\(E\/EVy)
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Converting z = x V y to 3SAT

Simplify further if you want to

© Using that (z V y) A (z V y) = x, we have that:
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Converting z = x V y to 3SAT

Simplify further if you want to

© Using that (z V y) A (z V y) = x, we have that:

@ ZVazVu)A(zVaeVy) =(zVae)
@ ZVazVy A(ZVEVyY) = (ZVy)
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Converting z = x V y to 3SAT

Simplify further if you want to

© Using that (z V y) A (z V y) = x, we have that:

@ ZVazVu)A(zVaeVy) =(zVae)
@ ZVazVy A(ZVEVyY) = (ZVy)

@ Using the above two observation, we have that our formula ¥ =
(szvy) A (zv:ch) A (Ev;cvy) A (EVEVy)
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Converting z = x V y to 3SAT

Simplify further if you want to

© Using that (z V y) A (z V y) = x, we have that:

@ ZVazVu)A(zVaeVy) =(zVae)
@ ZVazVy A(ZVEVyY) = (ZVy)

@ Using the above two observation, we have that our formula ¥ =
(szvy) A (zv:ch) A (Ev;cvy) A (EVEVy)
is equivalent to ¢ = <z VT V@) A <E \% a:) AN (E\/ y)
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Converting z = x V y to 3SAT

Simplify further if you want to

© Using that (z V y) A (z V y) = x, we have that:

@ ZVazVu)A(zVaeVy) =(zVae)
@ ZVazVy A(ZVEVyY) = (ZVy)

@ Using the above two observation, we have that our formula ¥ =
(szvy) A (EVcch) A (EVmV@) A (EVEVy)
is equivalent to ¢ = <z VT V@) A <E \% a:) AN (E\/ y)

(zz:c/\y) = (zVEV@)/\(EVm)/\(EVy)
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Converting z = x V y to 3SAT

e e e R K= E=] N =] N =R \]
=IO~ O o8
e =l el k= k=l R =1l
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Converting z = x V y to 3SAT

zZ T
0 O
0 O
0 1
0 1
1 0
1 0
1 1
1 1

e =l el k= k=l R =1l
el =l ===
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Converting z = x V y to 3SAT

Vy H clauses ‘

e el K= =R =R =R\
=l ~=|=|lo|o|8
k=l = E= =]l
S =l =IE =R =T
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Converting z = x V y to 3SAT

z T y\ z=xVy H clauses ‘
0 0 O 1

0 0 1 0 zVxVy

0 1 0 0 zVxZVy

0 1 1 0 ZzVZTVY

1 0 0 0 ZVxVy

1 0 1 1

1 1 0 1

1 1 1 1
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Converting z = x V y to 3SAT

z T y\ z=xVy H clauses ‘
0 0 O 1

0 0 1 0 zVxVy
0 1 0 0 zVxZVy
0 1 1 0 ZzVZTVY
1 0 0 0 ZVxVy
1 0 1 1

1 1 0 1

1 1 1 1

(=2 vy)

(;\/asvy)/\(sz\/y)/\(zVE\/@)/\(E\/:ch)
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Converting z = x V y to 3SAT

Simplify further if you want to

(z::ch)E(szVﬂ)/\(zVE\/y)/\(zVEVﬂ)/\(E\/wa)

@ Using that (xz V y) A (z V y) = x, we have that:
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Converting z = x V y to 3SAT

Simplify further if you want to

(z::ch)E(szVﬂ)/\(zVE\/y)/\(zVEVﬂ)/\(E\/wa)

@ Using that (xz V y) A (z V y) = x, we have that:

@ (zVxVyY)A(zVZVY)=2zVT.
@ (zvVZVy)A(zvVZVy =zVxT
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Converting z = x V y to 3SAT

Simplify further if you want to

(z::ch)E(szVﬂ)/\(zVE\/y)/\(zVEVﬂ)/\(E\/wa)

@ Using that (xz V y) A (z V y) = x, we have that:

@ (zVxVyY)A(zVZVY)=2zVT.
@ (zvVZVy)A(zvVZVy =zVxT

@ Using the above two observation, we have the following.
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Converting z = x V y to 3SAT

Simplify further if you want to

(z:sr:Vy)E(zV:I:\/ﬂ)/\(zVE\/y)/\(zVEVﬂ)/\(E\/wa)

@ Using that (xz V y) A (z V y) = x, we have that:

@ (zVxVyY)A(zVZVY)=2zVT.
@ (zvVZVy)A(zvVZVy =zVxT

@ Using the above two observation, we have the following.

The formula z = x V y is equivalent to the CNF formula
(z:mVy) = (zVyYA(=zVZ)A(ZVzVyY)
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Converting

z=x = (zVa)A(ZVT).
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Converting into CNF': summary

Lemma

z=x = (zVa)A(ZVT).
z=xzVy = (zVyY)A(zVZ)A(ZVZVyY)
z=xT ANy = (zVZEVY)AEZVa)A(ZVY)
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Exercise...

O Given:

® f(x1,...,x4) a boolean function
@ Formally: f: {0, l}d — {0,1}.
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Exercise...

O Given:

® f(x1,...,x4) a boolean function
@ Formally: f: {0, l}d — {0,1}.

© Prove that there is CNF formula that computes f.
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Exercise...

O Given:

® f(x1,...,x4) a boolean function
@ Formally: f: {0, l}d — {0,1}.

© Prove that there is CNF formula that computes f.
© Prove that there is 3CNF formula that computes f.
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2.4.2: SAT and 35AT
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SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

<:chVz\/'w\/u>/\(—mvﬂyvﬂz\/w\/u)/\(—m)

In 3SAT every clause must have exactly 3 different literals.
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SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(:chVz\/'w\/u)/\(—mvﬂy\/ﬁz\/w\/u>/\<—|m)

In 3SAT every clause must have exactly 3 different literals.

o’

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea
© Pad short clauses so they have 3 literals.

© Break long clauses into shorter clauses.
© Repeat the above till we have a 3CNF.
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3SAT <p SAT

Q 3SAT <p SAT.

@ Because...
A 3SAT instance is also an instance of SAT.
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SAT <p 3SAT

SAT <p 3SAT. \
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SAT <p 3SAT

SAT <p 3SAT. \

Given ¢ a SAT formula we create a 3SAT formula ¢’ such that
Q ( is satisfiable iff ¢’ is satisfiable.
@ ¢’ can be constructed from ¢ in time polynomial in |¢p|.
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SAT <p 3SAT

SAT <p 3SAT. \

Given ¢ a SAT formula we create a 3SAT formula ¢’ such that
Q ( is satisfiable iff ¢’ is satisfiable.
@ ¢’ can be constructed from ¢ in time polynomial in |¢p|.

Idea: if a clause of ¢ is not of length 3, replace it with several
clauses of length exactly 3.
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SAT <p 3SAT

A clause with a single literal

Reduction ldeas

Challenge: Some clauses in ¢ # liters # 3.
V clauses with # 3 literals: construct set logically equivalent clauses.

v
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SAT <p 3SAT

A clause with a single literal

Reduction ldeas

Challenge: Some clauses in ¢ # liters # 3.
V clauses with # 3 literals: construct set logically equivalent clauses.

@ Clause with one literal: ¢ = £ clause with a single literal.
u, v be new variables. Consider

c = (E\/qu)/\(E\/u\/—w)

/\<£V—|qu)/\(£V—|u\/—vv>.

v
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SAT <p 3SAT

A clause with a single literal

Reduction ldeas

Challenge: Some clauses in ¢ # liters # 3.
V clauses with # 3 literals: construct set logically equivalent clauses.

@ Clause with one literal: ¢ = £ clause with a single literal.
u, v be new variables. Consider

c = (E\/qu)/\(E\/u\/—w)

/\<£V—|qu)/\(£V—|u\/—vv>.

Observe: ¢ satisfiable <= ¢ is satisfiable

v
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SAT <p 3SAT

A clause with two literals

Reduction Ideas: 2 and more literals

@ Case clause with 2 literals: Let ¢ = £1 V £5. Let u be a new
variable. Consider

c = (£1V£2Vu> A (elvzzv—.u).

c is satisfiable <= ¢’ is satisfiable
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Breaking a clause

Lemma

For any boolean formulas X and'Y and z a new boolean variable.
Then
X VY is satisfiable

if and only if, z can be assigned a value such that

(X vV z) A <Y V —|z> is satisfiable

(with the same assignment to the variables appearing in X and Y ).
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SAT <p 3SAT (contd)

Clauses with more than 3 literals

letc =4,V ---V ¥ Let uy,...ur_3 be new variables. Consider
C, = (El \/£2 V U1> A (23 VvV uqg V ’UQ)
AN (£4 Vv U Vv U3> AN

CVAN (ek,_z Vv Uk—4 \Y ’U,k,_3> AN (Ek_l Vv Ek \Y4 _I’U,k_3>.
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SAT <p 3SAT (contd)

Clauses with more than 3 literals

letc =4,V ---V ¥ Let uy,...ur_3 be new variables. Consider
C, = (El \/£2 V U1> A (23 VvV uqg V ’UQ)
AN (£4 Vv U Vv U3> AN

CVAN (ek,_z Vv Uk—4 \Y ’U,k,_3> AN (Ek_l Vv Ek \Y4 _I’U,k_3>.

c Is satisfiable <—=> ¢’ is satisfiable. I
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SAT <p 3SAT (contd)

Clauses with more than 3 literals

letc =4,V ---V ¥ Let uy,...ur_3 be new variables. Consider
C, = (El \/£2 V U1> A <£3 VvV uqg V ’UQ)
AN (£4 Vv U Vv U3> AN

CVAN (ek,_z \Y Uk—4 \Y ’U,k,_3> AN (Ek_l Vv Ek \Y4 _I’U,k_3).

c Is satisfiable <—=> ¢’ is satisfiable. \

Another way to see it — reduce size clause by one & repeat :

C/ =<£1 Vv £2 e V ek_g Vv ’U/k_3> AN (Ek_l Vv ek, V —l’u,k_3>.
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An Example

Y = (ﬁﬂ'}l V ﬁa34> AN (331 V xs V —|a:3)

AN (—|:c2 V x3 VxyV :1:1> VAN (m1>

Equivalent form:

P = (—|w1 V xy V Z) AN (—|£E1 V xy V —|Z)

o’
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An Example

Y = (ﬁﬂ'}l V ﬁa34> AN (331 V xs V —|a:3)

AN (—|:c2 V x3 VxyV :1:1> VAN (m1>

Equivalent form:

P = (—|w1 V xy V Z) AN (—|£E1 V xy V —|Z)
AN (.’131 Vv Lt ) Vv _l.’E3)

o’
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An Example

Y = (ﬁﬂ'}l V ﬁa34> AN (331 V xs V —|a:3)

AN (—|:c2 V x3 VxyV :1:1> VAN (m1>
Equivalent form:
VP = (—|w1 V xy V Z) AN (—|£E1 V xy V —|Z)

AN (.’131 Vv Lt ) Vv _l.’E3)
VAN (_|332 V I3 V yl) VAN (134 VvV x, V _l’yl)

o’
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An Example

Y = (ﬁﬂ'}l V ﬁa34> AN (331 V xs V —|a:3)

AN (—|:c2 V x3 VxyV :1:1> VAN (m1>

Equivalent form:

Y= (x1 Vg Vz) A (mxVozyV z)
A (x1V "xa V —x3)
A (mxaVx3Vy) A (xgVayV-y;)
A (g1 VuVo)A (1 VuV o)
A (1 V-uVo)A (g V-ouV o).

o’
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Overall Reduction Algorithm

Reduction from SAT to 3SAT

ReduceSATTo3SAT (¢) :
// ¢: CNF formula.
for each clause ¢ of ¢ do
if ¢ does not have exactly 3 literals then
construct ¢’ as before
else
cd=c
1 is conjunction of all ¢’ constructed in loop
return Solver3SAT (v))

Correctness (informal)
@ is satisfiable <> 1) satisfiable
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Overall Reduction Algorithm

Reduction from SAT to 3SAT

ReduceSATTo3SAT (¢) :
// ¢: CNF formula.
for each clause ¢ of ¢ do
if ¢ does not have exactly 3 literals then
construct ¢’ as before
else
cd=c
1 is conjunction of all ¢’ constructed in loop
return Solver3SAT (v))

Correctness (informal)

@ is satisfiable <> 1) satisfiable
... Ve € ¢: new 3CNF formula ¢’ is equivalent to c.
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What about 2SAT?

@ 2SAT can be solved in poly time! (specifically, linear time!)
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What about 2SAT?

@ 2SAT can be solved in poly time! (specifically, linear time!)
@ No poly time reduction from SAT (or 3SAT) to 2SAT.
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What about 2SAT?

@ 2SAT can be solved in poly time! (specifically, linear time!)
@ No poly time reduction from SAT (or 3SAT) to 2SAT.
@ If 3 reduction == SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x VyV z): clause.
convert to collection of 2CNF clauses.
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What about 2SAT?

@ 2SAT can be solved in poly time! (specifically, linear time!)
@ No poly time reduction from SAT (or 3SAT) to 2SAT.
@ If 3 reduction == SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x VyV z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable «,
and rewrite this as

(xVyVa)A(—aVz) (bad! clause with 3 vars)
oo (xVa)A(—aVyVz) (bad! clause with 3 vars).
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What about 2SAT?

@ 2SAT can be solved in poly time! (specifically, linear time!)
@ No poly time reduction from SAT (or 3SAT) to 2SAT.
@ If 3 reduction == SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x VyV z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable «,
and rewrite this as

(xVyVa)A(—aVz) (bad! clause with 3 vars)
oo (xVa)A(—aVyVz) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
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243 Reducing 3SAT to Independent Set
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Independent Set

Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k7
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢
Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44



3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢

@ Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44



3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢

@ Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

@ Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).
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Interpreting 3SAT

There are two ways to think about 3SAT
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Interpreting 3SAT

There are two ways to think about 3SAT

© Assign 0/1 (false/true) to vars == formula evaluates to true.
Each clause evaluates to true.
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Interpreting 3SAT

There are two ways to think about 3SAT

© Assign 0/1 (false/true) to vars == formula evaluates to true.
Each clause evaluates to true.

@ Pick literal from each clause & find assignment s.t. all true.
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Interpreting 3SAT

There are two ways to think about 3SAT

© Assign 0/1 (false/true) to vars == formula evaluates to true.
Each clause evaluates to true.

@ Pick literal from each clause & find assignment s.t. all true.
... Fail if two literals picked are in conflict,
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Interpreting 3SAT

There are two ways to think about 3SAT

© Assign 0/1 (false/true) to vars == formula evaluates to true.
Each clause evaluates to true.

@ Pick literal from each clause & find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick x; and —x;
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Interpreting 3SAT

There are two ways to think about 3SAT

© Assign 0/1 (false/true) to vars == formula evaluates to true.
Each clause evaluates to true.

@ Pick literal from each clause & find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick x; and —x;
Use second view of 3SAT for reduction.
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The Reduction

© G, will have one vertex for each literal in a clause

C) D @
® ®60 ®6 @

Figure: o = (mx1 V@2 V x3) A (21 V "2 V 23)A (mx1 V T2 V 24)
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The Reduction

© G will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

() G2 )
@ @@ @@ 6

Figure: o = (mx1 V@2 V x3) A (21 V "2 V X3)A (mx1 V T2 V 24)
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The Reduction

© G will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

o l[@ &
ofolo%o(lofe

Figure: o = (mx1 V@2 V x3) A (21 V "2 V X3)A (mx1 V T2 V 24)
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The Reduction

© G will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

© Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

NpEeE
()] =) —=)

Figure: ¢ = (mx1 V@2 V x3) A (21 V "2 V 23)A (mx1 V T2 V 24)
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The Reduction

© G will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

© Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

© Take k to be the number of clauses

Figure: ¢ = (mx1 V@2 V x3) A (21 V "2 V 23)A (mx1 V T2 V 24)
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Correctness

@ is satisfiable <—=> G, has an independent set of size k
k: number of clauses in .

Proof.
=> a: truth assignment satisfying ¢
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Correctness

@ is satisfiable <—=> G, has an independent set of size k
k: number of clauses in .

Proof.

=> a: truth assignment satisfying ¢
@ Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size []

v
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Correctness (contd)

@ Is satisfiable <= G, has an independent set of size k (=
number of clauses in ).

Proof.
< S: independent set in G, of size k
@ S must contain exactly one vertex from each clause
@ S cannot contain vertices labeled by conflicting clauses
© Thus, it is possible to obtain a truth assignment that makes in
the literals in S true; such an assignment satisfies one literal in
every clause Ol

v
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