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Part I

Total recall...
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Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X.
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2.1: Polynomial time reductions
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Polynomial-time reductions and instance sizes

Proposition
R: a polynomial-time reduction from X to Y .
Then, for any instance IX of X, the size of the instance IY of Y
produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size
|IX| it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX|) bits and hence |IY | ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.
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Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X, A produces an instance IY of Y .

2 A runs in time polynomial in |IX|. (|IY | = size of IY ).

3 Answer to IX YES ⇐⇒ answer to IY is YES.
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Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X, A produces an instance IY of Y .

2 A runs in time polynomial in |IX|. (|IY | = size of IY ).

3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

This is a Karp reduction.

Sariel (UIUC) New CS473 6 Fall 2015 6 / 44



Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.
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Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z.

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X.
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2.2: Independent Set and Vertex
Cover
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Vertex Cover

Given a graph G = (V,E), a set of vertices S is:
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Vertex Cover

Given a graph G = (V,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V,E) be a graph.
S is an independent set ⇐⇒ V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E.
2 Since S is an independent set, either u 6∈ S or v 6∈ S.
3 Thus, either u ∈ V \ S or v ∈ V \ S.
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv.
3 =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)
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2.3: Vertex Cover and Set Cover
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The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover
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Vertex Cover ≤P Set Cover

1 Instance of Vertex Cover: G = (V,E) and integer k.
2 Construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

3 Observe that G has vertex cover of size k if and only if
U, {Sv}v∈V has a set cover of size k. (Exercise: Prove this.)
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Vertex Cover ≤P Set Cover

1 Instance of Vertex Cover: G = (V,E) and integer k.
2 Construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E.
3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

3 Observe that G has vertex cover of size k if and only if
U, {Sv}v∈V has a set cover of size k. (Exercise: Prove this.)
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Vertex Cover ≤P Set Cover: Example

1 2

3

4

56
a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover
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Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES ⇐⇒ IY is

YES.
1 typical easy direction to prove: answer to IY is YES if answer

to IX is YES
2 typical difficult direction to prove: answer to IX is YES if

answer to IY is YES (equivalently answer to IX is NO if
answer to IY is NO).

3 Runs in polynomial time.
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Summary

1 polynomial-time reductions.

1 If X ≤P Y + have efficient algorithm for Y
=⇒ efficient algorithm for X.

2 If X ≤P Y + no efficient algorithm for X
=⇒ no efficient algorithm for Y .

2 Examples of reductions between Independent Set, Clique,
Vertex Cover, and Set Cover.
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2.4: The Satisfiability Problem
(SAT)
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Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 literal: boolean variable xi or its negation ¬xi (also written as
xi).

2 clause: a disjunction of literals. Example: x1 ∨ x2 ∨ ¬x4.

3 conjunctive normal form (CNF) = propositional formula
which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.
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Satisfiability

SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such
that ϕ evaluates to true?

3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such
that ϕ evaluates to true?
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Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

2 (x1 ∨¬x2)∧ (¬x1 ∨ x2)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
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Importance of SAT and 3SAT

1 SAT, 3SAT: basic constraint satisfaction problems.

2 Many different problems can reduced to them: simple+powerful
expressivity of constraints.

3 Arise in many hardware/software verification/correctness
applications.

4 ... fundamental problem of NP-Completeness.

Sariel (UIUC) New CS473 24 Fall 2015 24 / 44



2.4.1: Converting a boolean formula with 3 variables
to 3SAT
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Converting z = x ∧ y to 3SAT

z x y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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0 1 1 0 0 1 1 1
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) New CS473 27 Fall 2015 27 / 44



Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
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1 0 1 0 z ∨ x ∨ y
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1 1 1 1
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses
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1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1(
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)
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Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
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Converting z = x ∨ y to 3SAT

z x y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Converting z = x ∨ y to 3SAT

z x y z = x ∨ y
0 0 0 1
0 0 1 0
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Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1
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Converting z = x ∨ y to 3SAT
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Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44



Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44



Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44



Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44



Converting z = x to CNF

Lemma
z = x ≡ (z ∨ x) ∧ (z ∨ x).
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Converting into CNF: summary

Lemma

z = x ≡ (z ∨ x) ∧ (z ∨ x).

z = x ∨ y ≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

z = x ∧ y ≡ (z ∨ x ∨ y) ∧ (z ∨ x) ∧ (z ∨ y)
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Exercise...

1 Given:
1 f(x1, . . . , xd) a boolean function
2 Formally: f : {0, 1}d → {0, 1}.

2 Prove that there is CNF formula that computes f .

3 Prove that there is 3CNF formula that computes f .
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2.4.2: SAT and 3SAT
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SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧

(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧

(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.
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3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.
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SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.
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SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas
Challenge: Some clauses in ϕ # liters 6= 3.
∀ clauses with 6= 3 literals: construct set logically equivalent clauses.

1 Clause with one literal: c = ` clause with a single literal.
u, v be new variables. Consider

c′ =
(
` ∨ u ∨ v

)
∧

(
` ∨ u ∨ ¬v

)
∧

(
` ∨ ¬u ∨ v

)
∧

(
` ∨ ¬u ∨ ¬v

)
.

Observe: c′ satisfiable ⇐⇒ c is satisfiable
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SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: 2 and more literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

c is satisfiable ⇐⇒ c′ is satisfiable
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Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y ).
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SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k. Let u1, . . . uk−3 be new variables. Consider

c′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
c is satisfiable ⇐⇒ c′ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

c′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.
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An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)
∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).
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Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do

if c does not have exactly 3 literals then

construct c′ as before

else

c′ = c
ψ is conjunction of all c′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable ⇐⇒ ψ satisfiable
... ∀c ∈ ϕ: new 3CNF formula c′ is equivalent to c.
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What about 2SAT?

1 2SAT can be solved in poly time! (specifically, linear time!)
2 No poly time reduction from SAT (or 3SAT) to 2SAT.
3 If ∃ reduction =⇒ SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α,
and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
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2.4.3: Reducing 3SAT to Independent Set
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Independent Set

Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k?
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3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44



3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44



3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44



3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44



Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.

Use second view of 3SAT for reduction.
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The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)
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Correctness

Proposition
ϕ is satisfiable ⇐⇒ Gϕ has an independent set of size k
k: number of clauses in ϕ.

Proof.
⇒ a: truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size
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Correctness (contd)

Proposition

ϕ is satisfiable ⇐⇒ Gϕ has an independent set of size k (=
number of clauses in ϕ).

Proof.
⇐ S: independent set in Gϕ of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause

Sariel (UIUC) New CS473 51 Fall 2015 51 / 44



Notes
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