
NEW CS 473: Theory II, Fall 2015

Reductions and NP
Lecture 2
August 27, 2015

Sariel (UIUC) New CS473 1 Fall 2015 1 / 44

Part I

Total recall...

Sariel (UIUC) New CS473 2 Fall 2015 2 / 44

Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X.

Sariel (UIUC) New CS473 3 Fall 2015 3 / 44

Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X.

Sariel (UIUC) New CS473 3 Fall 2015 3 / 44

Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X.

Sariel (UIUC) New CS473 3 Fall 2015 3 / 44

Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X.

Sariel (UIUC) New CS473 3 Fall 2015 3 / 44

2.1: Polynomial time reductions

Sariel (UIUC) New CS473 4 Fall 2015 4 / 44

Polynomial-time reductions and instance sizes

Proposition
R: a polynomial-time reduction from X to Y .
Then, for any instance IX of X, the size of the instance IY of Y
produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size
|IX| it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX|) bits and hence |IY | ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Sariel (UIUC) New CS473 5 Fall 2015 5 / 44

Polynomial-time reductions and instance sizes

Proposition
R: a polynomial-time reduction from X to Y .
Then, for any instance IX of X, the size of the instance IY of Y
produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size
|IX| it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX|) bits and hence |IY | ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Sariel (UIUC) New CS473 5 Fall 2015 5 / 44

Polynomial-time reductions and instance sizes

Proposition
R: a polynomial-time reduction from X to Y .
Then, for any instance IX of X, the size of the instance IY of Y
produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size
|IX| it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX|) bits and hence |IY | ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Sariel (UIUC) New CS473 5 Fall 2015 5 / 44

Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X, A produces an instance IY of Y .

2 A runs in time polynomial in |IX|. (|IY | = size of IY).

3 Answer to IX YES ⇐⇒ answer to IY is YES.

Sariel (UIUC) New CS473 6 Fall 2015 6 / 44

Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X, A produces an instance IY of Y .

2 A runs in time polynomial in |IX|. (|IY | = size of IY).

3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

Sariel (UIUC) New CS473 6 Fall 2015 6 / 44

Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X, A produces an instance IY of Y .

2 A runs in time polynomial in |IX|. (|IY | = size of IY).

3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

This is a Karp reduction.

Sariel (UIUC) New CS473 6 Fall 2015 6 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f(n) ≤ a ∗ nb (i.e., f(n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d: constants.

2 g
(
f(n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3 =⇒ g(f(n)) = O
(
nbd

)
is a polynomial.

4 Conclusion: Composition of two polynomials, is a
polynomial.

Sariel (UIUC) New CS473 7 Fall 2015 7 / 44

Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z.

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X.

Sariel (UIUC) New CS473 8 Fall 2015 8 / 44

Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z.

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X.

Sariel (UIUC) New CS473 8 Fall 2015 8 / 44

Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z.

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X.

Sariel (UIUC) New CS473 8 Fall 2015 8 / 44

2.2: Independent Set and Vertex
Cover

Sariel (UIUC) New CS473 9 Fall 2015 9 / 44

Vertex Cover

Given a graph G = (V,E), a set of vertices S is:

Sariel (UIUC) New CS473 10 Fall 2015 10 / 44

Vertex Cover

Given a graph G = (V,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Sariel (UIUC) New CS473 10 Fall 2015 10 / 44

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Sariel (UIUC) New CS473 11 Fall 2015 11 / 44

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Sariel (UIUC) New CS473 11 Fall 2015 11 / 44

Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V,E) be a graph.
S is an independent set ⇐⇒ V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E.
2 Since S is an independent set, either u 6∈ S or v 6∈ S.
3 Thus, either u ∈ V \ S or v ∈ V \ S.
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv.
3 =⇒ S is thus an independent set.

Sariel (UIUC) New CS473 12 Fall 2015 12 / 44

Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)

Sariel (UIUC) New CS473 13 Fall 2015 13 / 44

Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)

Sariel (UIUC) New CS473 13 Fall 2015 13 / 44

Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)

Sariel (UIUC) New CS473 13 Fall 2015 13 / 44

Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)

Sariel (UIUC) New CS473 13 Fall 2015 13 / 44

Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)

Sariel (UIUC) New CS473 13 Fall 2015 13 / 44

Independent Set ≤P Vertex Cover

1 (G, k): instance of the Independent Set problem.
G: graph with n vertices. k: integer.

2 G has an independent set of size ≥ k
⇐⇒ G has a vertex cover of size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G,n− k) is
an instance of Vertex Cover with the same answer.

4 We conclude:
1 Independent Set ≤P Vertex Cover.
2 Vertex Cover ≤P Independent Set.

(Because same reduction works in other direction.)

Sariel (UIUC) New CS473 13 Fall 2015 13 / 44

2.3: Vertex Cover and Set Cover

Sariel (UIUC) New CS473 14 Fall 2015 14 / 44

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Sariel (UIUC) New CS473 15 Fall 2015 15 / 44

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Sariel (UIUC) New CS473 15 Fall 2015 15 / 44

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Sariel (UIUC) New CS473 15 Fall 2015 15 / 44

Vertex Cover ≤P Set Cover

1 Instance of Vertex Cover: G = (V,E) and integer k.
2 Construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

3 Observe that G has vertex cover of size k if and only if
U, {Sv}v∈V has a set cover of size k. (Exercise: Prove this.)

Sariel (UIUC) New CS473 16 Fall 2015 16 / 44

Vertex Cover ≤P Set Cover

1 Instance of Vertex Cover: G = (V,E) and integer k.
2 Construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

3 Observe that G has vertex cover of size k if and only if
U, {Sv}v∈V has a set cover of size k. (Exercise: Prove this.)

Sariel (UIUC) New CS473 16 Fall 2015 16 / 44

Vertex Cover ≤P Set Cover

1 Instance of Vertex Cover: G = (V,E) and integer k.
2 Construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E.

3 Observe that G has vertex cover of size k if and only if
U, {Sv}v∈V has a set cover of size k. (Exercise: Prove this.)

Sariel (UIUC) New CS473 16 Fall 2015 16 / 44

Vertex Cover ≤P Set Cover

1 Instance of Vertex Cover: G = (V,E) and integer k.
2 Construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E.
3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

3 Observe that G has vertex cover of size k if and only if
U, {Sv}v∈V has a set cover of size k. (Exercise: Prove this.)

Sariel (UIUC) New CS473 16 Fall 2015 16 / 44

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56
a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover

Sariel (UIUC) New CS473 17 Fall 2015 17 / 44

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56
a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover

Sariel (UIUC) New CS473 17 Fall 2015 17 / 44

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56
a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover

Sariel (UIUC) New CS473 17 Fall 2015 17 / 44

Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES ⇐⇒ IY is

YES.
1 typical easy direction to prove: answer to IY is YES if answer

to IX is YES
2 typical difficult direction to prove: answer to IX is YES if

answer to IY is YES (equivalently answer to IX is NO if
answer to IY is NO).

3 Runs in polynomial time.

Sariel (UIUC) New CS473 18 Fall 2015 18 / 44

Summary

1 polynomial-time reductions.

1 If X ≤P Y + have efficient algorithm for Y
=⇒ efficient algorithm for X.

2 If X ≤P Y + no efficient algorithm for X
=⇒ no efficient algorithm for Y .

2 Examples of reductions between Independent Set, Clique,
Vertex Cover, and Set Cover.

Sariel (UIUC) New CS473 19 Fall 2015 19 / 44

Summary

1 polynomial-time reductions.

1 If X ≤P Y + have efficient algorithm for Y
=⇒ efficient algorithm for X.

2 If X ≤P Y + no efficient algorithm for X
=⇒ no efficient algorithm for Y .

2 Examples of reductions between Independent Set, Clique,
Vertex Cover, and Set Cover.

Sariel (UIUC) New CS473 19 Fall 2015 19 / 44

Summary

1 polynomial-time reductions.

1 If X ≤P Y + have efficient algorithm for Y
=⇒ efficient algorithm for X.

2 If X ≤P Y + no efficient algorithm for X
=⇒ no efficient algorithm for Y .

2 Examples of reductions between Independent Set, Clique,
Vertex Cover, and Set Cover.

Sariel (UIUC) New CS473 19 Fall 2015 19 / 44

Summary

1 polynomial-time reductions.

1 If X ≤P Y + have efficient algorithm for Y
=⇒ efficient algorithm for X.

2 If X ≤P Y + no efficient algorithm for X
=⇒ no efficient algorithm for Y .

2 Examples of reductions between Independent Set, Clique,
Vertex Cover, and Set Cover.

Sariel (UIUC) New CS473 19 Fall 2015 19 / 44

2.4: The Satisfiability Problem
(SAT)

Sariel (UIUC) New CS473 20 Fall 2015 20 / 44

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 literal: boolean variable xi or its negation ¬xi (also written as
xi).

2 clause: a disjunction of literals. Example: x1 ∨ x2 ∨ ¬x4.

3 conjunctive normal form (CNF) = propositional formula
which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Sariel (UIUC) New CS473 21 Fall 2015 21 / 44

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 literal: boolean variable xi or its negation ¬xi (also written as
xi).

2 clause: a disjunction of literals. Example: x1 ∨ x2 ∨ ¬x4.

3 conjunctive normal form (CNF) = propositional formula
which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Sariel (UIUC) New CS473 21 Fall 2015 21 / 44

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 literal: boolean variable xi or its negation ¬xi (also written as
xi).

2 clause: a disjunction of literals. Example: x1 ∨ x2 ∨ ¬x4.

3 conjunctive normal form (CNF) = propositional formula
which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Sariel (UIUC) New CS473 21 Fall 2015 21 / 44

Satisfiability

SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such
that ϕ evaluates to true?

3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such
that ϕ evaluates to true?

Sariel (UIUC) New CS473 22 Fall 2015 22 / 44

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

2 (x1 ∨¬x2)∧ (¬x1 ∨ x2)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
Sariel (UIUC) New CS473 23 Fall 2015 23 / 44

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

2 (x1 ∨¬x2)∧ (¬x1 ∨ x2)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
Sariel (UIUC) New CS473 23 Fall 2015 23 / 44

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

2 (x1 ∨¬x2)∧ (¬x1 ∨ x2)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
Sariel (UIUC) New CS473 23 Fall 2015 23 / 44

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

2 (x1 ∨¬x2)∧ (¬x1 ∨ x2)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
Sariel (UIUC) New CS473 23 Fall 2015 23 / 44

Importance of SAT and 3SAT

1 SAT, 3SAT: basic constraint satisfaction problems.

2 Many different problems can reduced to them: simple+powerful
expressivity of constraints.

3 Arise in many hardware/software verification/correctness
applications.

4 ... fundamental problem of NP-Completeness.

Sariel (UIUC) New CS473 24 Fall 2015 24 / 44

2.4.1: Converting a boolean formula with 3 variables
to 3SAT

Sariel (UIUC) New CS473 25 Fall 2015 25 / 44

Converting z = x ∧ y to 3SAT

z x y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 26 Fall 2015 26 / 44

Converting z = x ∧ y to 3SAT

z x y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Sariel (UIUC) New CS473 27 Fall 2015 27 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) New CS473 27 Fall 2015 27 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) New CS473 27 Fall 2015 27 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1

Sariel (UIUC) New CS473 27 Fall 2015 27 / 44

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 27 Fall 2015 27 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)

Sariel (UIUC) New CS473 28 Fall 2015 28 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)

Sariel (UIUC) New CS473 28 Fall 2015 28 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)

Sariel (UIUC) New CS473 28 Fall 2015 28 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)

Sariel (UIUC) New CS473 28 Fall 2015 28 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)

Sariel (UIUC) New CS473 28 Fall 2015 28 / 44

Converting z = x ∨ y to 3SAT

z x y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Sariel (UIUC) New CS473 29 Fall 2015 29 / 44

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Sariel (UIUC) New CS473 29 Fall 2015 29 / 44

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Sariel (UIUC) New CS473 29 Fall 2015 29 / 44

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1

Sariel (UIUC) New CS473 29 Fall 2015 29 / 44

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1(

z = x ∨ y
)

≡
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 29 Fall 2015 29 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) New CS473 30 Fall 2015 30 / 44

Converting z = x to CNF

Lemma
z = x ≡ (z ∨ x) ∧ (z ∨ x).

Sariel (UIUC) New CS473 31 Fall 2015 31 / 44

Converting into CNF: summary

Lemma

z = x ≡ (z ∨ x) ∧ (z ∨ x).

z = x ∨ y ≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

z = x ∧ y ≡ (z ∨ x ∨ y) ∧ (z ∨ x) ∧ (z ∨ y)

Sariel (UIUC) New CS473 32 Fall 2015 32 / 44

Exercise...

1 Given:
1 f(x1, . . . , xd) a boolean function
2 Formally: f : {0, 1}d → {0, 1}.

2 Prove that there is CNF formula that computes f .

3 Prove that there is 3CNF formula that computes f .

Sariel (UIUC) New CS473 33 Fall 2015 33 / 44

Exercise...

1 Given:
1 f(x1, . . . , xd) a boolean function
2 Formally: f : {0, 1}d → {0, 1}.

2 Prove that there is CNF formula that computes f .

3 Prove that there is 3CNF formula that computes f .

Sariel (UIUC) New CS473 33 Fall 2015 33 / 44

Exercise...

1 Given:
1 f(x1, . . . , xd) a boolean function
2 Formally: f : {0, 1}d → {0, 1}.

2 Prove that there is CNF formula that computes f .

3 Prove that there is 3CNF formula that computes f .

Sariel (UIUC) New CS473 33 Fall 2015 33 / 44

2.4.2: SAT and 3SAT

Sariel (UIUC) New CS473 34 Fall 2015 34 / 44

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧

(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧

(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Sariel (UIUC) New CS473 35 Fall 2015 35 / 44

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧

(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧

(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Sariel (UIUC) New CS473 35 Fall 2015 35 / 44

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Sariel (UIUC) New CS473 36 Fall 2015 36 / 44

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel (UIUC) New CS473 37 Fall 2015 37 / 44

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel (UIUC) New CS473 37 Fall 2015 37 / 44

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel (UIUC) New CS473 37 Fall 2015 37 / 44

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas
Challenge: Some clauses in ϕ # liters 6= 3.
∀ clauses with 6= 3 literals: construct set logically equivalent clauses.

1 Clause with one literal: c = ` clause with a single literal.
u, v be new variables. Consider

c′ =
(
` ∨ u ∨ v

)
∧

(
` ∨ u ∨ ¬v

)
∧

(
` ∨ ¬u ∨ v

)
∧

(
` ∨ ¬u ∨ ¬v

)
.

Observe: c′ satisfiable ⇐⇒ c is satisfiable

Sariel (UIUC) New CS473 38 Fall 2015 38 / 44

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas
Challenge: Some clauses in ϕ # liters 6= 3.
∀ clauses with 6= 3 literals: construct set logically equivalent clauses.

1 Clause with one literal: c = ` clause with a single literal.
u, v be new variables. Consider

c′ =
(
` ∨ u ∨ v

)
∧

(
` ∨ u ∨ ¬v

)
∧

(
` ∨ ¬u ∨ v

)
∧

(
` ∨ ¬u ∨ ¬v

)
.

Observe: c′ satisfiable ⇐⇒ c is satisfiable

Sariel (UIUC) New CS473 38 Fall 2015 38 / 44

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas
Challenge: Some clauses in ϕ # liters 6= 3.
∀ clauses with 6= 3 literals: construct set logically equivalent clauses.

1 Clause with one literal: c = ` clause with a single literal.
u, v be new variables. Consider

c′ =
(
` ∨ u ∨ v

)
∧

(
` ∨ u ∨ ¬v

)
∧

(
` ∨ ¬u ∨ v

)
∧

(
` ∨ ¬u ∨ ¬v

)
.

Observe: c′ satisfiable ⇐⇒ c is satisfiable

Sariel (UIUC) New CS473 38 Fall 2015 38 / 44

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: 2 and more literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

c is satisfiable ⇐⇒ c′ is satisfiable

Sariel (UIUC) New CS473 39 Fall 2015 39 / 44

Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

Sariel (UIUC) New CS473 40 Fall 2015 40 / 44

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k. Let u1, . . . uk−3 be new variables. Consider

c′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
c is satisfiable ⇐⇒ c′ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

c′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Sariel (UIUC) New CS473 41 Fall 2015 41 / 44

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k. Let u1, . . . uk−3 be new variables. Consider

c′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
c is satisfiable ⇐⇒ c′ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

c′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Sariel (UIUC) New CS473 41 Fall 2015 41 / 44

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k. Let u1, . . . uk−3 be new variables. Consider

c′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
c is satisfiable ⇐⇒ c′ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

c′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Sariel (UIUC) New CS473 41 Fall 2015 41 / 44

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)
∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) New CS473 42 Fall 2015 42 / 44

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)
∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) New CS473 42 Fall 2015 42 / 44

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)
∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) New CS473 42 Fall 2015 42 / 44

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)
∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) New CS473 42 Fall 2015 42 / 44

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do

if c does not have exactly 3 literals then

construct c′ as before

else

c′ = c
ψ is conjunction of all c′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable ⇐⇒ ψ satisfiable
... ∀c ∈ ϕ: new 3CNF formula c′ is equivalent to c.

Sariel (UIUC) New CS473 43 Fall 2015 43 / 44

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do

if c does not have exactly 3 literals then

construct c′ as before

else

c′ = c
ψ is conjunction of all c′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable ⇐⇒ ψ satisfiable
... ∀c ∈ ϕ: new 3CNF formula c′ is equivalent to c.

Sariel (UIUC) New CS473 43 Fall 2015 43 / 44

What about 2SAT?

1 2SAT can be solved in poly time! (specifically, linear time!)
2 No poly time reduction from SAT (or 3SAT) to 2SAT.
3 If ∃ reduction =⇒ SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α,
and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Sariel (UIUC) New CS473 44 Fall 2015 44 / 44

What about 2SAT?

1 2SAT can be solved in poly time! (specifically, linear time!)
2 No poly time reduction from SAT (or 3SAT) to 2SAT.
3 If ∃ reduction =⇒ SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α,
and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Sariel (UIUC) New CS473 44 Fall 2015 44 / 44

What about 2SAT?

1 2SAT can be solved in poly time! (specifically, linear time!)
2 No poly time reduction from SAT (or 3SAT) to 2SAT.
3 If ∃ reduction =⇒ SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α,
and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Sariel (UIUC) New CS473 44 Fall 2015 44 / 44

What about 2SAT?

1 2SAT can be solved in poly time! (specifically, linear time!)
2 No poly time reduction from SAT (or 3SAT) to 2SAT.
3 If ∃ reduction =⇒ SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α,
and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Sariel (UIUC) New CS473 44 Fall 2015 44 / 44

What about 2SAT?

1 2SAT can be solved in poly time! (specifically, linear time!)
2 No poly time reduction from SAT (or 3SAT) to 2SAT.
3 If ∃ reduction =⇒ SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α,
and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Sariel (UIUC) New CS473 44 Fall 2015 44 / 44

2.4.3: Reducing 3SAT to Independent Set

Sariel (UIUC) New CS473 45 Fall 2015 45 / 44

Independent Set

Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k?

Sariel (UIUC) New CS473 46 Fall 2015 46 / 44

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: Handle only 3CNF formulas (fails for other kinds of
boolean formulas).

Sariel (UIUC) New CS473 47 Fall 2015 47 / 44

Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.

Use second view of 3SAT for reduction.

Sariel (UIUC) New CS473 48 Fall 2015 48 / 44

Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.

Use second view of 3SAT for reduction.

Sariel (UIUC) New CS473 48 Fall 2015 48 / 44

Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.

Use second view of 3SAT for reduction.

Sariel (UIUC) New CS473 48 Fall 2015 48 / 44

Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.
... Fail if two literals picked are in conflict,

Use second view of 3SAT for reduction.

Sariel (UIUC) New CS473 48 Fall 2015 48 / 44

Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick xi and ¬xi

Use second view of 3SAT for reduction.

Sariel (UIUC) New CS473 48 Fall 2015 48 / 44

Interpreting 3SAT

There are two ways to think about 3SAT

1 Assign 0/1 (false/true) to vars =⇒ formula evaluates to true.
Each clause evaluates to true.

2 Pick literal from each clause & find assignment s.t. all true.
... Fail if two literals picked are in conflict,
e.g. you pick xi and ¬xi

Use second view of 3SAT for reduction.

Sariel (UIUC) New CS473 48 Fall 2015 48 / 44

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) New CS473 49 Fall 2015 49 / 44

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) New CS473 49 Fall 2015 49 / 44

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) New CS473 49 Fall 2015 49 / 44

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) New CS473 49 Fall 2015 49 / 44

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) New CS473 49 Fall 2015 49 / 44

Correctness

Proposition
ϕ is satisfiable ⇐⇒ Gϕ has an independent set of size k
k: number of clauses in ϕ.

Proof.
⇒ a: truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Sariel (UIUC) New CS473 50 Fall 2015 50 / 44

Correctness

Proposition
ϕ is satisfiable ⇐⇒ Gϕ has an independent set of size k
k: number of clauses in ϕ.

Proof.
⇒ a: truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Sariel (UIUC) New CS473 50 Fall 2015 50 / 44

Correctness (contd)

Proposition

ϕ is satisfiable ⇐⇒ Gϕ has an independent set of size k (=
number of clauses in ϕ).

Proof.
⇐ S: independent set in Gϕ of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause

Sariel (UIUC) New CS473 51 Fall 2015 51 / 44

Notes

Sariel (UIUC) New CS473 52 Fall 2015 52 / 44

Notes

Sariel (UIUC) New CS473 53 Fall 2015 53 / 44

Notes

Sariel (UIUC) New CS473 54 Fall 2015 54 / 44

Notes

Sariel (UIUC) New CS473 55 Fall 2015 55 / 44

	Total recall...
	Polynomial time reductions
	Independent Set and Vertex Cover
	Vertex Cover and Set Cover
	The Satisfiability Problem (SAT)
	Converting a boolean formula with 3 variables to 3SAT
	SAT and 3SAT
	Reducing 3SAT to Independent Set

