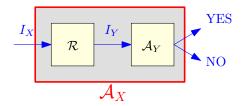
NEW CS 473: Theory II, Fall 2015

Reductions and NP

Lecture 2 August 27, 2015

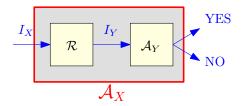
Part I

Total recall...

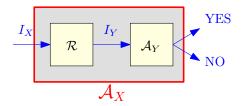


Algorithm is efficient if it runs in polynomial-time.

- Interested only in polynomial-time reductions.
- ③ X ≤_P Y: Have polynomial-time reduction from problem X to problem Y.
- ④ \mathcal{A}_{Y} : poly-time algorithm for Y.
 -) \implies Polynomial-time/efficient algorithm for X.

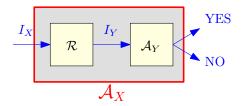


- Algorithm is efficient if it runs in polynomial-time.
- Interested only in polynomial-time reductions.
- ③ X ≤_P Y: Have polynomial-time reduction from problem X to problem Y.
- ④ \mathcal{A}_{Y} : poly-time algorithm for Y.
- $\Im \implies$ Polynomial-time/efficient algorithm for X.



- Algorithm is efficient if it runs in polynomial-time.
- Interested only in polynomial-time reductions.
- Solution State State
- \mathcal{A}_{Y} : poly-time algorithm for Y.

 \implies Polynomial-time/efficient algorithm for X.



- Algorithm is efficient if it runs in polynomial-time.
- Interested only in polynomial-time reductions.
- Solution State State
- \mathcal{A}_{Y} : poly-time algorithm for Y.
- Polynomial-time/efficient algorithm for X.

2.1: Polynomial time reductions

Proposition

 \mathcal{R} : a polynomial-time reduction from X to Y. Then, for any instance I_X of X, the size of the instance I_Y of Yproduced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_Y is the output of \mathcal{R} on input I_X . \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

 \mathcal{R} : a polynomial-time reduction from X to Y. Then, for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_Y is the output of \mathcal{R} on input I_X . \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| < p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Proposition

 \mathcal{R} : a polynomial-time reduction from X to Y. Then, for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_Y is the output of \mathcal{R} on input I_X . \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Definition

 $X \leq_P Y$: polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* \mathcal{A} such that: • Given an instance I_X of X, \mathcal{A} produces an instance I_Y of Y. • \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.

(3) Answer to I_X YES \iff answer to I_Y is YES.

Definition

 $X \leq_P Y$: polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A such that:

- Given an instance I_X of X, \mathcal{A} produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- **(3)** Answer to I_X YES \iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Definition

 $X \leq_P Y$: polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A such that:

- Given an instance I_X of X, \mathcal{A} produces an instance I_Y of Y.
- 3 \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- **(3)** Answer to I_X YES \iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

This is a Karp reduction.

f and g monotone increasing. Assume that:

- $\begin{array}{ll} \bullet \ f(n) \leq a * n^b & (\text{i.e., } f(n) = O(n^b)) \\ \bullet \ g(n) \leq c * n^d & (\text{i.e., } g(n) = O(n^d)) \\ \end{array}$
- a, b, c, d: constants.
- ${\small \bigcirc} \hspace{0.1cm} g \Big(f(n) \Big) \leq g \big(a \ast n^b \big) \leq c \ast \big(a \ast n^b \big)^d \leq c \cdot a^d \ast n^{bd}$
- ${old one } \implies g(f(n)) = O\Big(n^{bd}\Big)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

- f and g monotone increasing. Assume that:
 - $\begin{array}{ll} \bullet \ f(n) \leq a * n^b & (\text{i.e., } f(n) = O(n^b)) \\ \bullet \ g(n) \leq c * n^d & (\text{i.e., } g(n) = O(n^d)) \\ \end{array}$
 - a, b, c, d: constants.
- (a) $\implies g(f(n)) = O\Big(n^{bd}\Big)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

- f and g monotone increasing. Assume that:
 - $\begin{array}{ll} \bullet \ f(n) \leq a * n^b & (\text{i.e., } f(n) = O(n^b)) \\ \bullet \ g(n) \leq c * n^d & (\text{i.e., } g(n) = O(n^d)) \\ \end{array}$
 - a, b, c, d: constants.
- (a) $\implies g(f(n)) = O\Big(n^{bd}\Big)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

- **1** f and g monotone increasing. Assume that: **1** f(n) $\leq a * n^b$ (i.e., $f(n) = O(n^b)$) **2** $g(n) \leq c * n^d$ (i.e., $g(n) = O(n^d)$)
 a, b, c, d: constants.
- ${\color{black} {\it 0} \hspace{.05in} } g\Big(f(n)\Big) \leq g\big(a*n^b\big) \leq c*\big(a*n^b\big)^d \leq c \cdot a^d*n^{bd}$
- ${old O} \implies g(f(n)) = O\Big(n^{bd}\Big)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

- I and g monotone increasing. Assume that:

 f(n) ≤ a * n^b
 g(n) ≤ c * n^d
 (i.e., f(n) = O(n^b))
 g(n) ≤ c * n^d
 (i.e., g(n) = O(n^d))
 a, b, c, d: constants.

 I g(f(n)) ≤ g(a * n^b) ≤ c * (a * n^b)^d ≤ c · a^d * n^{bd}
 I ⇒ g(f(n)) = O(n^{bd}) is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

- f and g monotone increasing. Assume that:
 - $\begin{array}{ll} \bullet \ f(n) \leq a * n^b & (\text{i.e., } f(n) = O(n^b)) \\ \bullet \ g(n) \leq c * n^d & (\text{i.e., } g(n) = O(n^d)) \end{array}$
 - a, b, c, d: constants.
- ${igsian} \implies g(f(n)) = O\Big(n^{bd}\Big)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

- f and g monotone increasing. Assume that:
 - $\begin{array}{ll} \bullet \ f(n) \leq a * n^b & (\text{i.e., } f(n) = O(n^b)) \\ \bullet \ g(n) \leq c * n^d & (\text{i.e., } g(n) = O(n^d)) \end{array}$
 - a, b, c, d: constants.
- $@ g \Big(f(n) \Big) \leq g \big(a \ast n^b \big) \leq c \ast \big(a \ast n^b \big)^d \leq c \cdot a^d \ast n^{bd}$
- ${igsian} \implies g(f(n)) = O\Big(n^{bd}\Big)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- \bigcirc ...show that an algorithm for Y implies an algorithm for X.

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y

[1] ...show that an algorithm for Y implies an algorithm for X.

Transitivity of Reductions

Proposition

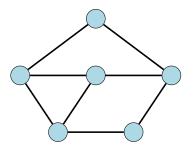
 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- ${f 0}$...show that an algorithm for ${f Y}$ implies an algorithm for ${f X}.$

2.2: Independent Set and Vertex Cover

Vertex Cover

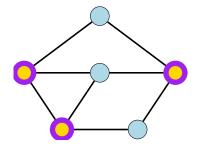
Given a graph G = (V, E), a set of vertices S is:



Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

• A vertex cover if every $e \in E$ has at least one endpoint in S.



Problem (Vertex Cover)

Input: A graph **G** and integer k. **Goal:** Is there a vertex cover of size $\leq k$ in **G**?

Can we relate Independent Set and Vertex Cover?

Problem (Vertex Cover)

Input: A graph **G** and integer k. **Goal:** Is there a vertex cover of size $\leq k$ in **G**?

Can we relate Independent Set and Vertex Cover?

Relationship between...

Vertex Cover and Independent Set

Proposition

Sariel (UIUC)

Let G = (V, E) be a graph. S is an independent set $\iff V \setminus S$ is a vertex cover.

Proof.

 (\Rightarrow) Let S be an independent set • Consider any edge $uv \in E$. **2** Since S is an independent set, either $u \notin S$ or $v \notin S$. **3** Thus, either $u \in V \setminus S$ or $v \in V \setminus S$. • $V \setminus S$ is a vertex cover. (\Leftarrow) Let $V \setminus S$ be some vertex cover: • Consider $u, v \in S$ **2** uv is not an edge of **G**, as otherwise $V \setminus S$ does not cover uv. $\mathfrak{S} \implies S$ is thus an independent set.

Fall 2015

12 / 44

New CS473

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- **Q** has an independent set of size $\geq k$ \iff **G** has a vertex cover of size $\leq n-k$
- (3) (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- We conclude:
 - Independent Set \leq_P Vertex Cover.
 - **2** Vertex Cover \leq_P Independent Set.

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- G has an independent set of size ≥ k
 ⇒ G has a vertex cover of size < n k

(G, k) is an instance of **Independent Set**, and (G, n - k) is an instance of **Vertex Cover** with the same answer.

- We conclude:
 - Independent Set \leq_P Vertex Cover.
 - **2** Vertex Cover \leq_P Independent Set.

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- G has an independent set of size ≥ k
 ⇐⇒ G has a vertex cover of size < n k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- We conclude:
 - Independent Set \leq_P Vertex Cover.
 - **2** Vertex Cover \leq_P Independent Set.

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- G has an independent set of size ≥ k
 ⇒ G has a vertex cover of size ≤ n − k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- We conclude:
 - Independent Set \leq_P Vertex Cover.
 - **2** Vertex Cover \leq_P Independent Set.

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- G has an independent set of size ≥ k
 ⇒ G has a vertex cover of size ≤ n − k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- We conclude:
 - Independent Set \leq_P Vertex Cover.
 - **2** Vertex Cover \leq_P Independent Set.

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- G has an independent set of size ≥ k
 ⇐⇒ G has a vertex cover of size ≤ n k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- We conclude:
 - Independent Set \leq_P Vertex Cover.
 - Vertex Cover \leq_P Independent Set.

2.3: Vertex Cover and Set Cover

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$m{U} = \{1, 2, 3, 4, 5, 6, 7\}$$
, $m{k} = 2$ with

$\{m{S}_2,m{S}_6\}$ is a set cover

Sariel (UIUC)

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
, $k = 2$ with

 $\{S_2,S_6\}$ is a set cover

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
, $k = 2$ with

 $\{S_2,S_6\}$ is a set cover

Sariel (UIUC)

Vertex Cover \leq_P Set Cover

1 Instance of Vertex Cover: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ and integer k.

- 2 Construct an instance of **Set Cover** as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- Observe that G has vertex cover of size k if and only if U, {S_v}_{v∈V} has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_P Set Cover

- **1** Instance of Vertex Cover: G = (V, E) and integer k.
- ② Construct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- Observe that G has vertex cover of size k if and only if U, {S_v}_{v∈V} has a set cover of size k. (Exercise: Prove this.)

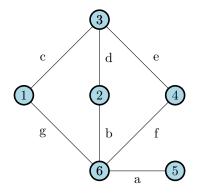
Vertex Cover \leq_P Set Cover

- **1** Instance of Vertex Cover: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ and integer k.
- Onstruct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
 U = E.
- Observe that G has vertex cover of size k if and only if U, {S_v}_{v∈V} has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_{P} Set Cover

- **1** Instance of Vertex Cover: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ and integer k.
- Onstruct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
 - $\mathbf{O} \ \mathbf{U} = \mathbf{E}.$
 - We will have one set corresponding to each vertex; $S_v = \{e \mid e \text{ is incident on } v\}.$
- Observe that G has vertex cover of size k if and only if U, {S_v}_{v∈V} has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_{P} **Set Cover**: Example

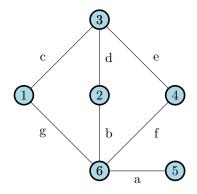


 $\{3,6\}$ is a vertex cover

Let $oldsymbol{U}=\{a,b,c,d,e,f,g\}$, $oldsymbol{k}=2$ with

 $\{S_3,S_6\}$ is a set cover

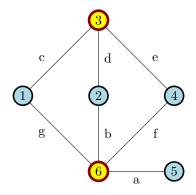
Vertex Cover \leq_{P} **Set Cover**: Example



Let $U = \{a, b, c, d, e, f, g\}$, k = 2 with $S_1 = \{c, g\}$ $S_2 = \{b, d\}$ $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$ $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

 $\{3,6\}$ is a vertex cover

Vertex Cover $\leq_{\mathbf{P}}$ **Set Cover**: Example



Let
$$U = \{a, b, c, d, e, f, g\}$$
,
 $k = 2$ with
 $S_1 = \{c, g\}$ $S_2 = \{b, d\}$
 $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$
 $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$
 $\{S_3, S_6\}$ is a set cover

 $\{3,6\}$ is a vertex cover

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- 3 Satisfies the property that answer to I_X is YES $\iff I_Y$ is YES.
 - typical easy direction to prove: answer to *I_Y* is YES if answer to *I_X* is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- Runs in polynomial time.

Summary

polynomial-time reductions.

If X ≤_P Y + have efficient algorithm for Y ⇒ efficient algorithm for X.
If X ≤_P Y + no efficient algorithm for X ⇒ **no** efficient algorithm for Y.

Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

Summary

polynomial-time reductions.

- If $X \leq_P Y$ + have efficient algorithm for Y \implies efficient algorithm for X.
- $\textbf{0} \quad \text{If } X \leq_P Y + \text{no efficient algorithm for } X \\ \implies \textbf{no} \text{ efficient algorithm for } Y.$
- Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

polynomial-time reductions.

If X ≤_P Y + have efficient algorithm for Y ⇒ efficient algorithm for X.
If X ≤_P Y + no efficient algorithm for X ⇒ **no** efficient algorithm for Y.

Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

polynomial-time reductions.

If X ≤_P Y + have efficient algorithm for Y ⇒ efficient algorithm for X.
If X ≤_P Y + no efficient algorithm for X ⇒ **no** efficient algorithm for Y.

Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

2.4: The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- literal: boolean variable x_i or its negation $\neg x_i$ (also written as $\overline{x_i}$).
- **2** clause: a disjunction of literals. Example: $x_1 \lor x_2 \lor \neg x_4$.
- Conjunctive normal form (CNF) = propositional formula which is a conjunction of clauses

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5 \text{ is a CNF formula.}$

A formula φ is a 3CNF: A CNF formula such that every clause has exactly 3 literals.
(x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃ ∨ x₁) is a 3CNF formula, but (x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃) ∧ x₅ is not.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- literal: boolean variable x_i or its negation $\neg x_i$ (also written as $\overline{x_i}$).
- **2** clause: a disjunction of literals. Example: $x_1 \lor x_2 \lor \neg x_4$.
- conjunctive normal form (CNF) = propositional formula which is a conjunction of clauses

 $\textbf{0} \ \ (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5 \text{ is a } \mathrm{CNF} \text{ formula}.$

A formula φ is a 3CNF: A CNF formula such that every clause has exactly 3 literals.
(x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃ ∨ x₁) is a 3CNF formula, but (x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃) ∧ x₅ is not.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- literal: boolean variable x_i or its negation $\neg x_i$ (also written as $\overline{x_i}$).
- **2** clause: a disjunction of literals. Example: $x_1 \lor x_2 \lor \neg x_4$.
- conjunctive normal form (CNF) = propositional formula which is a conjunction of clauses

 $\textbf{0} \ \ (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5 \text{ is a } \mathrm{CNF} \text{ formula}.$

A formula φ is a 3CNF: A CNF formula such that every clause has exactly 3 literals.
(x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃ ∨ x₁) is a 3CNF formula, but (x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃) ∧ x₅ is not.

SAT

Instance: A CNF formula φ . **Question:** Is there a truth assignment to the variable of φ such that φ evaluates to true?

3SAT

Instance: A 3CNF formula φ . **Question:** Is there a truth assignment to the variable of φ such that φ evaluates to true?

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $\textcircled{0} \quad (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5 \text{ is satisfiable; take} \\ x_1, x_2, \ldots x_5 \text{ to be all true}$
- 2 $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $\begin{tabular}{ll} \bullet & (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5 \text{ is satisfiable; take} \\ & x_1, x_2, \dots x_5 \text{ to be all true} \end{tabular}$

3SAT

Given a $3{
m CNF}$ formula arphi, is there a truth assignment to variables such that arphi evaluates to true?

(More on **2SAT** in a bit...)

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \ldots x_5$ to be all true

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Sariel (UIUC)

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \ldots x_5$ to be all true

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of **SAT** and **3SAT**

SAT, **3SAT**: basic constraint satisfaction problems.

- Many different problems can reduced to them: simple+powerful expressivity of constraints.
- Arise in many hardware/software verification/correctness applications.
- **9** ... fundamental problem of **NP-Complete**ness.

24

24 / 44

2.4.1: Converting a boolean formula with 3 variables to 3SAT

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$	$z \lor \overline{x} \lor \overline{y}$			
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge oldsymbol{y}$	$z \lor \overline{x} \lor \overline{y}$	$\overline{z} \lor x \lor y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

z	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge oldsymbol{y}$	$z ee \overline{x} ee \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

z	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$	$z \lor \overline{x} \lor \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	$\overline{z} \lor \overline{x} \lor y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$	$z \lor \overline{x} \lor \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	$\overline{z} ee \overline{x} ee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$	$z ee \overline{x} ee \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	$\overline{z} \lor \overline{x} \lor y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

$$egin{aligned} & \left(z = x \wedge y
ight) \ & \equiv \ & \left(z \lor \overline{x} \lor \overline{y}
ight) \land \left(\overline{z} \lor x \lor y
ight) \land \left(\overline{z} \lor \overline{x} \lor \overline{y}
ight) \land \left(\overline{z} \lor \overline{x} \lor y
ight) \end{aligned}$$

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x \wedge y$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$z = x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$z = x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$z ee \overline{x} ee \overline{y}$
1	0	0	0	$\overline{z} ee x ee y$
1	0	1	0	$\overline{z} ee x ee y$
1	1	0	0	$\overline{z} ee x ee y$
1	1	1	1	

z	\boldsymbol{x}	$oldsymbol{y}$	$z = x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$oldsymbol{z}ee\overline{x}ee\overline{y}$
1	0	0	0	$\overline{z} ee x ee y$
1	0	1	0	$\overline{z} ee x ee y$
1	1	0	0	$\overline{z} ee x ee y$
1	1	1	1	

$$\begin{split} & \left(z = x \land y \right) \\ & \equiv \\ & \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \lor y \right) \land \left(\overline{z} \lor x \lor \overline{y} \right) \land \left(\overline{z} \lor \overline{x} \lor y \right) \end{split}$$

Sariel (UIUC)

1 Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

 $\begin{array}{l} \bullet \quad (\overline{z} \lor x \lor u) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor x) \\ \bullet \quad (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) = (\overline{z} \lor y) \end{array}$

 $\begin{array}{l} \textcircled{O} \quad \mbox{Using the above two observation, we have that our formula } \psi \equiv \\ & \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \lor y \right) \land \left(\overline{z} \lor x \lor \overline{y} \right) \land \left(\overline{z} \lor \overline{x} \lor y \right) \\ & \mbox{is equivalent to } \psi \equiv \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \right) \land \left(\overline{z} \lor y \right) \\ \end{array}$

$$igg(oldsymbol{z} = oldsymbol{x} \wedge oldsymbol{y} igg) \quad \equiv \quad igg(oldsymbol{z} ee oldsymbol{x} ee oldsymbol{y} igg) \wedge igg(oldsymbol{\overline{z}} ee oldsymbol{x} igg) \wedge igg(oldsymbol{\overline{z}} ee oldsymbol{y} igg)$$

• Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

 $\begin{array}{l} \bullet \quad (\overline{z} \lor x \lor u) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor x) \\ \bullet \quad (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) = (\overline{z} \lor y) \end{array}$

 $\begin{array}{l} \textbf{O} \quad \textbf{Using the above two observation, we have that our formula } \psi \equiv \\ \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \lor y \right) \land \left(\overline{z} \lor x \lor \overline{y} \right) \land \left(\overline{z} \lor \overline{x} \lor y \right) \\ \text{is equivalent to } \psi \equiv \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \right) \land \left(\overline{z} \lor y \right) \end{array}$

$$igg(oldsymbol{z} = oldsymbol{x} \wedge oldsymbol{y} igg) \quad \equiv \quad igg(oldsymbol{z} ee oldsymbol{x} ee oldsymbol{y} igg) \wedge igg(oldsymbol{\overline{z}} ee oldsymbol{y} igg) \wedge igg(oldsymbol{\overline{z}} ee oldsymbol{y} igg)$$

1 Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

- $\begin{array}{l} \bullet \quad (\overline{z} \lor x \lor u) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor x) \\ \bullet \quad (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) = (\overline{z} \lor y) \end{array}$
- $\begin{array}{l} \textcircled{O} \quad \mbox{Using the above two observation, we have that our formula } \psi \equiv \\ \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \lor y \right) \land \left(\overline{z} \lor x \lor \overline{y} \right) \land \left(\overline{z} \lor \overline{x} \lor y \right) \\ \mbox{is equivalent to } \psi \equiv \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \right) \land \left(\overline{z} \lor y \right) \\ \end{array}$

$$igg(oldsymbol{z}=oldsymbol{x}\wedgeoldsymbol{y}igg) \ \equiv \ igg(oldsymbol{z}eeoldsymbol{x}eeoldsymbol{y}igg)\wedgeigg(oldsymbol{\overline{z}}eeoldsymbol{x}igg)\wedgeigg(oldsymbol{\overline{z}}eeoldsymbol{y}igg)$$

1 Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

$$\begin{array}{l} \bullet \quad (\overline{z} \lor x \lor u) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor x) \\ \bullet \quad (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) = (\overline{z} \lor y) \end{array}$$

2 Using the above two observation, we have that our formula $\psi \equiv (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor y)$ is equivalent to $\psi \equiv (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x) \land (\overline{z} \lor y)$

$$igg(oldsymbol{z}=oldsymbol{x}\wedgeoldsymbol{y}igg) \ \equiv \ igg(oldsymbol{z}eeoldsymbol{x}eeoldsymbol{y}igg)\wedgeigg(oldsymbol{\overline{z}}eeoldsymbol{x}igg)\wedgeigg(oldsymbol{\overline{z}}eeoldsymbol{y}igg)$$

1 Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

$$\begin{array}{l} \bullet \quad (\overline{z} \lor x \lor u) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor x) \\ \bullet \quad (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) = (\overline{z} \lor y) \end{array}$$

 $\begin{array}{l} \textbf{O} \quad \textbf{Using the above two observation, we have that our formula } \psi \equiv \\ \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \lor y \right) \land \left(\overline{z} \lor x \lor \overline{y} \right) \land \left(\overline{z} \lor \overline{x} \lor y \right) \\ \text{is equivalent to } \psi \equiv \left(z \lor \overline{x} \lor \overline{y} \right) \land \left(\overline{z} \lor x \right) \land \left(\overline{z} \lor y \right) \end{array}$

$$ig(oldsymbol{z} = oldsymbol{x} \wedge oldsymbol{y} ig) \quad \equiv \quad ig(oldsymbol{z} ee oldsymbol{x} ee oldsymbol{y} ig) \wedge ig(oldsymbol{\overline{z}} ee oldsymbol{x} ig) \wedge ig(oldsymbol{\overline{z}} ee oldsymbol{y} ig)$$

			1 1
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$oldsymbol{z} = x ee oldsymbol{y}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$z = x \lor y$	clauses
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$z = x \lor y$	clauses
0	0	0	1	
0	0	1	0	$z \lor x \lor \overline{y}$
0	1	0	0	$z ee \overline{x} ee y$
0	1	1	0	$z ee \overline{x} ee \overline{y}$
1	0	0	0	$\overline{z} ee x ee y$
1	0	1	1	
1	1	0	1	
1	1	1	1	

\boldsymbol{z}	\boldsymbol{x}	$oldsymbol{y}$	$z = x \lor y$	clauses
0	0	0	1	
0	0	1	0	$z \lor x \lor \overline{y}$
0	1	0	0	$z ee \overline{x} ee y$
0	1	1	0	$z ee \overline{x} ee \overline{y}$
1	0	0	0	$\overline{z} \lor x \lor y$
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$egin{aligned} & \left(z = x \lor y
ight) \ & \equiv \ & \left(z \lor x \lor \overline{y}
ight) \land \left(z \lor \overline{x} \lor y
ight) \land \left(\overline{z} \lor x \lor y
ight) \end{aligned}$$

 $\Big(z=x\lor y\Big)\equiv (z\lor x\lor \overline{y})\land (z\lor \overline{x}\lor y)\land (z\lor \overline{x}\lor \overline{y})\land (\overline{z}\lor x\lor y)$

() Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

 $\begin{array}{l} \bullet \quad (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{y}. \\ \bullet \quad (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{x} \end{array}$

② Using the above two observation, we have the following.

Lemma

$$\Big(z=x\lor y\Big)\equiv (z\lor x\lor \overline{y})\land (z\lor \overline{x}\lor y)\land (z\lor \overline{x}\lor \overline{y})\land (\overline{z}\lor x\lor y)$$

() Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

 $\begin{array}{l} \bullet \quad (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{y}. \\ \bullet \quad (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{x} \end{array}$

Output the above two observation, we have the following.

Lemma

$$\left(z=x\lor y
ight)\equiv (z\lor x\lor \overline{y})\land (z\lor \overline{x}\lor y)\land (z\lor \overline{x}\lor \overline{y})\land (\overline{z}\lor x\lor y)$$

() Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

- $(z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{y}.$
- ${\color{black} {\it 0} {\it 0} } (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{x}$

Ising the above two observation, we have the following.

Lemma

$$\left(z=x\lor y
ight)\equiv (z\lor x\lor \overline{y})\land (z\lor \overline{x}\lor y)\land (z\lor \overline{x}\lor \overline{y})\land (\overline{z}\lor x\lor y)$$

() Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

- $\bullet \ (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor \overline{y}) = z \lor \overline{y}.$

② Using the above two observation, we have the following.

Lemma

Converting $z = \overline{x}$ to CNF

Converting into CNF: summary

$z=\overline{x}$	≡	$(z \lor x) \land (\overline{z} \lor \overline{x}).$
$z = x \lor y$	≡	$(z ee \overline{y}) \wedge (z ee \overline{x}) \wedge (\overline{z} ee x ee y)$
$oldsymbol{z} = x \wedge oldsymbol{y}$	≡	$(z ee \overline{x} ee \overline{y}) \wedge (\overline{z} ee x) \wedge (\overline{z} ee y)$

Exercise...

Given:

• $f(x_1, \ldots, x_d)$ a boolean function • Formally: $f: \{0, 1\}^d \rightarrow \{0, 1\}$.

I Prove that there is CNF formula that computes f.

⁽³⁾ Prove that there is 3CNF formula that computes f.

Exercise...

Given:

- $f(x_1,\ldots,x_d)$ a boolean function
- **2** Formally: $f: \{0,1\}^d \to \{0,1\}$.
- 2 Prove that there is CNF formula that computes f.
- \bigcirc Prove that there is 3CNF formula that computes f.

Exercise...

Given:

- $f(x_1,\ldots,x_d)$ a boolean function
- **2** Formally: $f: \{0,1\}^d \to \{0,1\}$.
- 2 Prove that there is CNF formula that computes f.
- **③** Prove that there is 3CNF formula that computes f.

2.4.2: SAT and 3SAT

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$ig(x ee y ee z ee w ee uig) \wedge ig(
eg x ee
eg y ee
eg z ee w ee uig) \wedge ig(
eg x ig)$$

In **3SAT** every clause must have **exactly** 3 different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Is Break long clauses into shorter clauses.
- In the second second

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$ig(x ee y ee z ee w ee uig) \wedge ig(
eg x ee
eg y ee
eg z ee w ee uig) \wedge ig(
eg x ig)$$

In **3SAT** every clause must have **exactly** 3 different literals.

Reduce from of **SAT** to **3SAT**: make all clauses to have **3** variables...

Basic idea

- **1** Pad short clauses so they have **3** literals.
- Isreak long clauses into shorter clauses.
- 8 Repeat the above till we have a 3CNF.

$3SAT \leq_P SAT$

- 3SAT \leq_P SAT.
- 2 Because...

A **3SAT** instance is also an instance of **SAT**.

$\mathsf{SAT} \leq_{\mathrm{P}} \mathsf{3SAT}$

Claim

SAT \leq_P 3SAT.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that • φ is satisfiable iff φ' is satisfiable.

(a) φ' can be constructed from φ in time polynomial in $|\varphi|$.

ldea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

$SAT \leq_P 3SAT$

Claim

SAT \leq_P 3SAT.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that • φ is satisfiable iff φ' is satisfiable.

2 φ' can be constructed from φ in time polynomial in $|\varphi|$.

ldea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

$SAT \leq_P 3SAT$

Claim

SAT \leq_P 3SAT.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that • φ is satisfiable iff φ' is satisfiable.

2 φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

$\begin{array}{l} \mathsf{SAT} \leq_{\mathrm{P}} \mathsf{3SAT} \\ \text{A clause with a single literal} \end{array}$

Reduction Ideas

Challenge: Some clauses in $\varphi \#$ liters $\neq 3$. \forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.

• Clause with one literal: $c = \ell$ clause with a single literal. u, v be new variables. Consider

Observe: c' satisfiable $\iff c$ is satisfiable

$\begin{array}{l} \mathsf{SAT} \leq_{\mathrm{P}} \mathsf{3SAT} \\ \text{A clause with a single literal} \end{array}$

Reduction Ideas

Challenge: Some clauses in $\varphi \#$ liters $\neq 3$. \forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.

• Clause with one literal: $c = \ell$ clause with a single literal. u, v be new variables. Consider

$$egin{aligned} c' = & \left(oldsymbol{\ell} ee oldsymbol{u} ee oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{u} ee oldsymbol{
eq} oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{
eq} ee oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{
eq} ee oldsymbol{v}
ight)
ight). \end{aligned}$$

Observe: c' satisfiable $\iff c$ is satisfiable

$\begin{array}{l} \mathsf{SAT} \leq_{\mathrm{P}} \mathsf{3SAT} \\ \text{A clause with a single literal} \end{array}$

Reduction Ideas

Challenge: Some clauses in $\varphi \#$ liters $\neq 3$. \forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.

• Clause with one literal: $c = \ell$ clause with a single literal. u, v be new variables. Consider

$$egin{aligned} c' = & \left(oldsymbol{\ell} ee oldsymbol{u} ee oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{u} ee oldsymbol{
eq} oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{
eq} ee oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{
eq} ee oldsymbol{v}
ight) \wedge \left(oldsymbol{\ell} ee oldsymbol{
eq} ee oldsymbol{v}
ight)
ight). \end{aligned}$$

Observe: c' satisfiable $\iff c$ is satisfiable

Reduction Ideas: 2 and more literals

• Case clause with 2 literals: Let $c = \ell_1 \lor \ell_2$. Let u be a new variable. Consider

$$c' = \Bigl(\ell_1 ee \ell_2 ee u \Bigr) \ \land \ \Bigl(\ell_1 ee \ell_2 ee
eg u \Bigr).$$

c is satisfiable $\iff c'$ is satisfiable

Breaking a clause

Lemma

For any boolean formulas X and Y and z a new boolean variable. Then

 $X \lor Y$ is satisfiable

if and only if, z can be assigned a value such that

$$ig(oldsymbol{X} ee oldsymbol{z} ig) \wedge ig(oldsymbol{Y} ee
eg oldsymbol{
abla} ig)$$
 is satisfiable

(with the same assignment to the variables appearing in X and Y).

SAT \leq_P **3SAT** (contd)

Clauses with more than 3 literals

Let
$$c = \ell_1 \lor \cdots \lor \ell_k$$
. Let $u_1, \ldots u_{k-3}$ be new variables. Consider
 $c' = (\ell_1 \lor \ell_2 \lor u_1) \land (\ell_3 \lor \neg u_1 \lor u_2)$
 $\land (\ell_4 \lor \neg u_2 \lor u_3) \land$
 $\cdots \land (\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

$$c' = \left(\ell_1 \lor \ell_2 \ldots \lor \ell_{k-2} \lor u_{k-3}
ight) \land \left(\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}
ight).$$

SAT \leq_P **3SAT** (contd)

Clauses with more than 3 literals

Let
$$c = \ell_1 \lor \cdots \lor \ell_k$$
. Let $u_1, \ldots u_{k-3}$ be new variables. Consider
 $c' = (\ell_1 \lor \ell_2 \lor u_1) \land (\ell_3 \lor \neg u_1 \lor u_2)$
 $\land (\ell_4 \lor \neg u_2 \lor u_3) \land$
 $\cdots \land (\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

$$c' = (\ell_1 \lor \ell_2 \ldots \lor \ell_{k-2} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).$$

SAT \leq_P **3SAT** (contd)

Clauses with more than 3 literals

Let
$$c = \ell_1 \lor \cdots \lor \ell_k$$
. Let $u_1, \ldots u_{k-3}$ be new variables. Consider
 $c' = (\ell_1 \lor \ell_2 \lor u_1) \land (\ell_3 \lor \neg u_1 \lor u_2)$
 $\land (\ell_4 \lor \neg u_2 \lor u_3) \land$
 $\cdots \land (\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

$$c' = \Bigl(\ell_1 \lor \ell_2 \ldots \lor \ell_{k-2} \lor u_{k-3}\Bigr) \land \Bigl(\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}\Bigr).$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr).$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr).$$

$$egin{aligned} \psi &= (
egin{aligned} & (
egin{aligned} & x_1 ee
egin{aligned} & y_1 ee \\ & & (x_1 ee u \lor v) \land (x_1 \lor u \lor \neg v) \\ & & & (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v). \end{aligned}$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr).$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr).$$

Overall Reduction Algorithm Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(\varphi):

// \varphi: CNF formula.

for each clause c of \varphi do

if c does not have exactly 3 literals then

construct c' as before

else

c' = c

\psi is conjunction of all c' constructed in loop

return Solver3SAT(\psi)
```

Correctness (informal)

arphi is satisfiable $\iff \psi$ satisfiable

... $orall c \in arphi$: new $3\mathrm{CNF}$ formula c' is equivalent to c.

Overall Reduction Algorithm Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(\varphi):

// \varphi: CNF formula.

for each clause c of \varphi do

if c does not have exactly 3 literals then

construct c' as before

else

c' = c

\psi is conjunction of all c' constructed in loop

return Solver3SAT(\psi)
```

Correctness (informal)

arphi is satisfiable $\iff \psi$ satisfiable

... $\forall c \in \varphi$: new 3CNF formula c' is equivalent to c.

2SAT can be solved in poly time! (specifically, linear time!)
 No poly time reduction from SAT (or 3SAT) to 2SAT.
 If a reduction and SAT 3SAT solvable in polynamial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable lpha, and rewrite this as

 $\begin{array}{l} (x \lor y \lor \alpha) \land (\neg \alpha \lor z) \qquad (\mathsf{bad! clause with 3 vars}) \\ \text{or} \quad (x \lor \alpha) \land (\neg \alpha \lor y \lor z) \qquad (\mathsf{bad! clause with 3 vars}) \end{array}$

(In animal farm language: **2SAT** good, **3SAT** bad.)

2SAT can be solved in poly time! (specifically, linear time!)
No poly time reduction from SAT (or 3SAT) to 2SAT.
If = reduction ______ SAT, 3SAT solvable in polynomial time

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable lpha, and rewrite this as

 $\begin{array}{ll} (x \lor y \lor \alpha) \land (\neg \alpha \lor z) & (\text{bad! clause with 3 vars}) \\ \text{or} & (x \lor \alpha) \land (\neg \alpha \lor y \lor z) & (\text{bad! clause with 3 vars}) \end{array}$

(In animal farm language: **2SAT** good, **3SAT** bad.)

- **2SAT** can be solved in poly time! (specifically, linear time!)
- On poly time reduction from SAT (or 3SAT) to 2SAT.
- **§** If \exists reduction \implies **SAT**, **3SAT** solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause. convert to collection of 2CNF clauses. Introduce a fake variable α , and rewrite this as

 $(x \lor y \lor lpha) \land (\neg lpha \lor z)$ (bad! clause with 3 vars) or $(x \lor lpha) \land (\neg lpha \lor y \lor z)$ (bad! clause with 3 vars).

In animal farm language: **2SAT** good, **3SAT** bad.)

- **2SAT** can be solved in poly time! (specifically, linear time!)
- On poly time reduction from SAT (or 3SAT) to 2SAT.
- § If \exists reduction \implies SAT, 3SAT solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable α , and rewrite this as

 $(x \lor y \lor \alpha) \land (\neg \alpha \lor z) \qquad (\text{bad! clause with 3 vars})$ or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z) \qquad (\text{bad! clause with 3 vars}).$

In animal farm language: **2SAT** good, **3SAT** bad.)

- **2SAT** can be solved in poly time! (specifically, linear time!)
- On poly time reduction from SAT (or 3SAT) to 2SAT.
- § If \exists reduction \implies SAT, 3SAT solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable α , and rewrite this as

$$\begin{array}{ll} (x \lor y \lor \alpha) \land (\neg \alpha \lor z) & (\mathsf{bad! clause with 3 vars}) \\ \mathsf{r} & (x \lor \alpha) \land (\neg \alpha \lor y \lor z) & (\mathsf{bad! clause with 3 vars}). \end{array}$$

(In animal farm language: **2SAT** good, **3SAT** bad.)

Sariel (UIUC)

2.4.3: Reducing 3SAT to Independent Set

Independent Set

Instance: A graph **G**, integer k. **Question**: Is there an independent set in **G** of size k?

$3SAT \leq_P Independent Set$

The reduction **3SAT** $\leq_{\mathbf{P}}$ **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

The reduction **3SAT** $\leq_{\mathbf{P}}$ **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Obtice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars => formula evaluates to true.
 Each clause evaluates to true.
- 2 Pick literal from each clause & find assignment s.t. all true.
- Use second view of **3SAT** for reduction.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars ⇒ formula evaluates to true.
 Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 Use second view of **3SAT** for reduction.

There are two ways to think about **3SAT**

- Solution Assign 0/1 (false/true) to vars ⇒ formula evaluates to true.
 Each clause evaluates to true.
- **2** Pick literal from each clause & find assignment s.t. all true.

Use second view of **3SAT** for reduction.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 Fail if two literals picked are in conflict,

Use second view of **3SAT** for reduction.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 ... Fail if two literals picked are in conflict,
 - e.g. you pick x_i and $\neg x_i$

Use second view of **3SAT** for reduction.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 Fail if two literals picked are in conflict,
 - e.g. you pick x_i and $\neg x_i$

Use second view of **3SAT** for reduction.

- **(**) G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 0 Take $m{k}$ to be the number of clauses

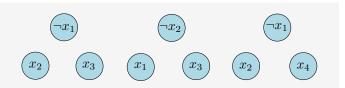


Figure: $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- 0 G_{arphi} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- $\scriptstyle \textcircled{0}$ Take $m{k}$ to be the number of clauses

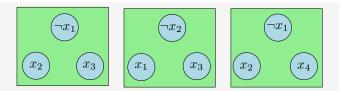


Figure: $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- **1** G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- ${\scriptstyle \textcircled{0}}$ Take $m{k}$ to be the number of clauses

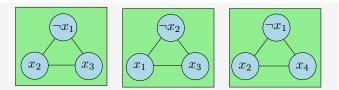


Figure: $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- **(**) G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 0 Take $m{k}$ to be the number of clauses

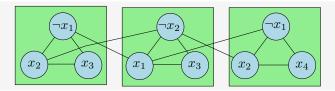


Figure: $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- **(**) G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

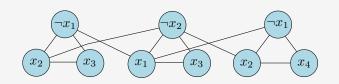


Figure: $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

 φ is satisfiable $\iff G_{\varphi}$ has an independent set of size kk: number of clauses in φ .

Proof.

- \Rightarrow *a*: truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size

Correctness

Proposition

 φ is satisfiable $\iff G_{\varphi}$ has an independent set of size kk: number of clauses in φ .

Proof.

 \Rightarrow *a*: truth assignment satisfying arphi

Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size

Correctness (contd)

Proposition

 φ is satisfiable $\iff G_{\varphi}$ has an independent set of size k (= number of clauses in φ).

Proof.

 $\Leftarrow S$: independent set in G_{arphi} of size k

- ${f 0}$ S must contain exactly one vertex from each clause
- **2** S cannot contain vertices labeled by conflicting clauses
- Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause