Polynomial-time reductions

1. Algorithm is **efficient** if it runs in polynomial-time.
2. Interested only in **polynomial-time reductions**.
3. \(X \leq_p Y \): Have polynomial-time reduction from problem \(X \) to problem \(Y \).
4. \(\mathcal{A}_Y \): poly-time algorithm for \(Y \).
5. \(\implies \) Polynomial-time/efficient algorithm for \(X \).

Proposition

\(\mathcal{R} \): a polynomial-time reduction from \(X \) to \(Y \).

Then, for any instance \(I_X \) of \(X \), the size of the instance \(I_Y \) of \(Y \) produced from \(I_X \) by \(\mathcal{R} \) is polynomial in the size of \(I_X \).

Proof.

\(\mathcal{R} \) is a polynomial-time algorithm and hence on input \(I_X \) of size \(|I_X| \) it runs in time \(p(|I_X|) \) for some polynomial \(p() \).

\(I_Y \) is the output of \(\mathcal{R} \) on input \(I_X \).

\(\mathcal{R} \) can write at most \(p(|I_X|) \) bits and hence \(|I_Y| \leq p(|I_X|) \).

\(\Box \)

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.
Polynomial-time Reduction

Definition

\(X \leq_P Y \): polynomial time reduction from a decision problem \(X \) to a decision problem \(Y \) is an algorithm \(A \) such that:

1. Given an instance \(I_X \) of \(X \), \(A \) produces an instance \(I_Y \) of \(Y \).
2. \(A \) runs in time polynomial in \(|I_X| \). (\(|I_Y| = \text{size of } I_Y \)).
3. Answer to \(I_X \) YES \(\iff \) answer to \(I_Y \) is YES.

Proposition

If \(X \leq_P Y \) then a polynomial time algorithm for \(Y \) implies a polynomial time algorithm for \(X \).

This is a Karp reduction.

Composing polynomials...

A quick reminder

1. \(f \) and \(g \) monotone increasing. Assume that:
 1.1 \(f(n) \leq a \cdot n^b \) (i.e., \(f(n) = O(n^b) \))
 1.2 \(g(n) \leq c \cdot n^d \) (i.e., \(g(n) = O(n^d) \))
 \(a, b, c, d \): constants.
2. \(g(f(n)) \leq g(a \cdot n^b) \leq c \cdot (a \cdot n^b)^d \leq c \cdot a^d \cdot n^{bd} \)
3. \(\implies g(f(n)) = O(n^{bd}) \) is a polynomial.
4. Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition

\(X \leq_P Y \) and \(Y \leq_P Z \) implies that \(X \leq_P Z \).

1. Note: \(X \leq_P Y \) does not imply that \(Y \leq_P X \) and hence it is very important to know the FROM and TO in a reduction.
2. To prove \(X \leq_P Y \) you need to show a reduction FROM \(X \) TO \(Y \)
3. ...show that an algorithm for \(Y \) implies an algorithm for \(X \).

Vertex Cover

Given a graph \(G = (V, E) \), a set of vertices \(S \) is:

1. A vertex cover if every \(e \in E \) has at least one endpoint in \(S \).
The **Vertex Cover** Problem

Problem (Vertex Cover)

Input: A graph \(G \) and integer \(k \).

Goal: Is there a vertex cover of size \(\leq k \) in \(G \)?

Can we relate **Independent Set** and **Vertex Cover**?

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set \(U \) of \(n \) elements, a collection \(S_1, S_2, \ldots, S_m \) of subsets of \(U \), and an integer \(k \).

Goal: Is there a collection of at most \(k \) of these sets \(S_i \) whose union is equal to \(U \)?

Example

Let \(U = \{1, 2, 3, 4, 5, 6, 7\} \), \(k = 2 \) with

\[
S_1 = \{3, 7\} \quad S_2 = \{3, 4, 5\} \\
S_3 = \{1\} \quad S_4 = \{2, 4\} \\
S_5 = \{5\} \quad S_6 = \{1, 2, 6, 7\}
\]

\(\{S_2, S_6\} \) is a set cover
Vertex Cover \leq_P Set Cover

1. Instance of Vertex Cover: $G = (V, E)$ and integer k.
2. Construct an instance of Set Cover as follows:
 2.1 Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
 2.2 $U = E$.
 2.3 We will have one set corresponding to each vertex; $S_v = \{e | e$ is incident on $v\}$.
3. Observe that G has vertex cover of size k if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that:

1. Transforms an instance I_X of X into an instance I_Y of Y.
2. Satisfies the property that answer to I_X is YES \iff answer to I_Y is YES.
 2.1 typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 2.2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
3. Runs in polynomial time.

Summary

1. polynomial-time reductions.
 1.1 If $X \leq_P Y$ + have efficient algorithm for Y \Rightarrow efficient algorithm for X.
 1.2 If $X \leq_P Y$ + no efficient algorithm for X \Rightarrow no efficient algorithm for Y.
2. Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

Vertex Cover \leq_P Set Cover: Example

Let $U = \{a, b, c, d, e, f, g\}$, $k = 2$ with

$S_1 = \{a, g\}$
$S_2 = \{b, d\}$
$S_3 = \{c, d, e\}$
$S_4 = \{e, f\}$
$S_5 = \{a\}$
$S_6 = \{a, b, f, g\}$

$\{3, 6\}$ is a vertex cover
Propositional Formulas

Definition
Consider a set of boolean variables x_1, x_2, \ldots, x_n.

1. **literal**: boolean variable x_i or its negation $\neg x_i$ (also written as $\overline{x_i}$).
2. **clause**: a disjunction of literals. Example: $x_1 \lor x_2 \lor \neg x_4$.
3. **conjunctive normal form (CNF)** = propositional formula which is a conjunction of clauses

 3.1 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
4. A formula φ is a 3CNF:
 A CNF formula such that every clause has **exactly** 3 literals.

 4.1 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Importance of SAT and 3SAT

1. **SAT, 3SAT**: basic constraint satisfaction problems.
2. Many different problems can reduced to them: simple+powerful expressivity of constraints.
3. Arise in many hardware/software verification/correctness applications.
4. ... fundamental problem of **NP-Completeness**.
Converting \(z = x \land y \) to 3SAT

\[
\begin{array}{cccc|cccc|cccc|cccc}
\hline
z & x & y & z = x \land y & z \lor \overline{x} \lor \overline{y} & z \lor x \lor y & z \lor x \lor \overline{y} & z \lor \overline{x} \lor y \\
\hline
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
\]

\[
(z = x \land y) \\
\equiv (z \lor \overline{x} \lor \overline{y}) \land (z \lor x \lor y) \land (z \lor \overline{x} \lor y)
\]

Converting \(z = x \lor y \) to 3SAT

\[
\begin{array}{cccc|cccc|cccc|cccc}
\hline
z & x & y & z = x \lor y & z \lor \overline{x} \lor \overline{y} & z \lor x \lor y & z \lor x \lor \overline{y} & z \lor \overline{x} \lor y \\
\hline
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
\]

\[
(z = x \lor y) \\
\equiv (z \lor \overline{x} \lor \overline{y}) \land (z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y)
\]

Converting \(z = x \lor y \) to 3SAT

Simplify further if you want to

1. Using that \((x \lor y) \land (x \lor \overline{y}) = x\), we have that:
 1.1 \((\overline{z} \lor x \lor \overline{u}) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor x)\)
 1.2 \((\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor \overline{y}) = (\overline{z} \lor y)\)

2. Using the above two observation, we have that our
 formula \(\psi \equiv (z \lor \overline{x} \lor \overline{y}) \land (z \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (z \lor x \lor \overline{y})\)

 is equivalent to

 \[
 \psi \equiv (z \lor \overline{x} \lor \overline{y}) \land (z \lor x) \land (z \lor y)
 \]

Lemma

\[
(z = x \land y) \equiv (z \lor \overline{x} \lor \overline{y}) \land (z \lor x) \land (z \lor y)
\]
Converting $z = x \lor y$ to 3SAT

Simplify further if you want to

\[
(z = x \lor y) \equiv (z \lor x \lor y) \land (z \lor \bar{x} \lor \bar{y}) \land (\bar{z} \lor x \lor y)
\]

1. Using that $(x \lor y) \land (x \lor \bar{y}) = x$, we have that:
 1.1 $(z \lor x \lor y) \land (z \lor x \lor \bar{y}) = z \lor y$.
 1.2 $(z \lor x \lor y) \land (z \lor x \lor \bar{y}) = z \lor \bar{x}$

2. Using the above two observation, we have the following.

Lemma

The formula $z = x \lor y$ is equivalent to the CNF formula

\[
(z = x \lor y) \equiv (z \lor \bar{y}) \land (z \lor \bar{x}) \land (\bar{z} \lor x \lor y)
\]

Converting into CNF: summary

Lemma

\[
\begin{align*}
z &= \bar{x} & \equiv & (z \lor x) \land (z \lor \bar{x}). \\
z &= x \lor y & \equiv & (z \lor \bar{y}) \land (z \lor \bar{x}) \land (\bar{z} \lor x \lor y) \\
z &= x \land y & \equiv & (z \lor x \lor \bar{y}) \land (z \lor x) \land (z \lor y)
\end{align*}
\]

Exercise...

1. **Given:**
 1.1 $f(x_1, \ldots, x_d)$ a boolean function
 1.2 Formally: $f : \{0, 1\}^d \to \{0, 1\}$.

2. Prove that there is CNF formula that computes f.
3. Prove that there is 3CNF formula that computes f.
SAT \leq_p 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In 3SAT every clause must have **exactly** 3 different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea
1. Pad short clauses so they have 3 literals.
2. Break long clauses into shorter clauses.
3. Repeat the above till we have a 3CNF.

SAT \leq_p 3SAT

Claim SAT \leq_p 3SAT.
Given \(\varphi \) a SAT formula we create a 3SAT formula \(\varphi' \) such that
1. \(\varphi \) is satisfiable iff \(\varphi' \) is satisfiable.
2. \(\varphi' \) can be constructed from \(\varphi \) in time polynomial in \(|\varphi| \).

Idea: if a clause of \(\varphi \) is not of length 3, replace it with several clauses of length exactly 3.

3SAT \leq_p SAT

1. 3SAT \leq_p SAT.
2. Because...
 A 3SAT instance is also an instance of SAT.

SAT \leq_p 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in \(\varphi \) \# literals \(\neq 3 \).
All clauses with \(\neq 3 \) literals: construct set logically equivalent clauses.
1. **Clause with one literal:** \(c = \ell \) clause with a single literal.
 \(u, v \) be new variables. Consider
 $$c' = (\ell \lor u \lor v) \land (\ell \lor u \lor \neg v) \land (\ell \lor \neg u \lor v) \land (\ell \lor \neg u \lor \neg v).$$

Observe: \(c' \) satisfiable \iff \(c \) is satisfiable
SAT \(\leq_p\) 3SAT
A clause with two literals

Reduction Ideas: 2 and more literals

1. **Case clause with 2 literals:** Let \(c = \ell_1 \lor \ell_2\). Let \(u\) be a new variable. Consider
 \[c' = (\ell_1 \lor \ell_2 \lor u) \land (\ell_1 \lor \ell_2 \lor \neg u)\].
 \(c\) is satisfiable \(\iff\) \(c'\) is satisfiable

SAT \(\leq_p\) 3SAT (contd)
Clauses with more than 3 literals
Let \(c = \ell_1 \lor \cdots \lor \ell_k\). Let \(u_1, \ldots, u_{k-3}\) be new variables.

Consider
\[c' = (\ell_1 \lor \ell_2 \lor u_1) \land (\ell_3 \lor \neg u_1 \lor u_2) \land (\ell_4 \lor \neg u_2 \lor u_3) \land \cdots \land (\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).\]

Claim
\(c\) is satisfiable \(\iff\) \(c'\) is satisfiable.
Another way to see it — reduce size clause by one & repeat:
\[c' = (\ell_1 \lor \ell_2 \ldots \lor \ell_{k-2} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).\]

Breaking a clause

Lemma
For any boolean formulas \(X\) and \(Y\) and \(z\) a new boolean variable. Then
\(X \lor Y\) is satisfiable
if and only if, \(z\) can be assigned a value such that
\[(X \lor z) \land (Y \lor \neg z)\] is satisfiable
(with the same assignment to the variables appearing in \(X\) and \(Y\)).

An Example

Example
\[\varphi = (\neg x_1 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1) \land (x_1).\]
Equivalent form:
\[\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1) \land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v) \land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).\]
Overall Reduction Algorithm
Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(ϕ):
    // ϕ: CNF formula.
    for each clause c of ϕ do
        if c does not have exactly 3 literals then
            construct c' as before
        else
            c' = c
    ψ is conjunction of all c' constructed in loop
    return Solver3SAT(ψ)
```

Correctness (informal)
ϕ is satisfiable ⇐⇒ ψ satisfiable
... ∀c ∈ ϕ: new 3CNF formula c' is equivalent to c.

What about 2SAT?

1. 2SAT can be solved in poly time! (specifically, linear time!)
2. No poly time reduction from SAT (or 3SAT) to 2SAT.
3. If ∃ reduction SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?
(x ∨ y ∨ z): clause.
convert to collection of 2CNF clauses. Introduce a fake variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) \hspace{1cm} \text{(bad! clause with 3 vars)}
or \hspace{1cm} (x ∨ α) ∧ (¬α ∨ y ∨ z) \hspace{1cm} \text{(bad! clause with 3 vars)}.

(In animal farm language: 2SAT good, 3SAT bad.)

3SAT \leq_p Independent Set

The reduction 3SAT \leq_p Independent Set

Input: Given a 3CNF formula ϕ
Goal: Construct a graph G_ϕ and number k such that G_ϕ has an independent set of size k if and only if ϕ is satisfiable.
G_ϕ should be constructable in time polynomial in size of ϕ

1. Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
2. Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).
Interpreting 3SAT

There are two ways to think about 3SAT

1. Assign 0/1 (false/true) to vars \implies formula evaluates to true.
 Each clause evaluates to true.
2. Pick literal from each clause & find assignment s.t. all true.
 ... Fail if two literals picked are in conflict, e.g. you pick x_i and $\neg x_i$

Use second view of 3SAT for reduction.

The Reduction

1. G_φ will have one vertex for each literal in a clause
2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
4. Take k to be the number of clauses

Correctness

Proposition
φ is satisfiable $\iff G_\varphi$ has an independent set of size k
k: number of clauses in φ.

Proof.

$\Rightarrow a$: truth assignment satisfying φ

0.1 Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size \square

Correctness (contd)

Proposition
φ is satisfiable $\iff G_\varphi$ has an independent set of size k
(k: number of clauses in φ).

Proof.

$\Leftarrow S$: independent set in G_φ of size k

0.1 S must contain exactly one vertex from each clause
0.2 S cannot contain vertices labeled by conflicting clauses
0.3 Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause \square