
HW 6 (due Monday, 6pm, October 19, 2015)
NEW CS 473: Theory II, Fall 2015 Version: 1.11

Collaboration Policy: This homework can be worked in groups of up to three students.
Submission is online on moodle.

1. (50 pts.) Collect the min-cut.
Consider the algorithm that given a graph G = (V,E) with n vertices and m edges, starts with the empty
forest H0 = (V, ∅) where every vertex is a single node tree.
In the ith epoch, the algorithm picks an edge e randomly and uniformly from the original set of edges E,
and check:

• If the vertices of e belong to different trees of the forest Hi−1, then it is useful . If so the algorithm
adds e to this graph, to form the new forest Hi, and continues to the next epoch.

• If the edge connects two vertices that are already in the same tree of Hi−1, then this edge is useless.
The algorithm continues in this fashion, till it computes Hn−2, which has exactly two trees.

(A) (5 pts.) Let Hi−1 be as above. Assume that the minimum cut in G is of size k, and Hi−1 does not
contain any edges of this min-cut. Let Ui be the set of edges of G that are useful as far as Hi−1 is
concerned. Prove, a lower bound, as large as possible, on Ui as a function of i, k, n and m.

(B) (5 pts.) Provide a lower bound, as large as possible, on the probability that a random edge of G is
useful for Hi−1. (Use (A).)

(C) (10 pts.) Let Ni be the number of edges sampled in the ith epoch till a useful edge for Hi−1 is found.
Prove an upper bound, as small as possible, on E[Ni]. (Use (B).)

(D) (10 pts.) Consider the forest Hn−2. Prove a lower bound as large as possible, on the probability that
Hn−2 (with its two trees), represents a min-cut of G. Provide a full and self contained proof of this
lower bound (i.e., you can not refer to the class notes/web/the universe for a proof of this).

(E) (10 pts.) The expected number of edges inspected by the above algorithm to construct Hn−2 is

α = E[N1 +N2 + . . .+Nn−2] .

Provide and prove an upper bound, as small as possible, on the value of α (as a function of k, n and
m.

(F) (10 pts.) (Hard.) Provide a randomized algorithm, as fast as possible, that computes the connected
components of Hn−2 (and its associated vertex cut [i.e., it does not compute the edges in the cut
themselves]). Prove a bound on the expected running time of your algorithm.
For full credit, the expected running time of your algorithm should be O(α), and should not use
union-find and hashing1. A slower algorithm would get half the points (and then this part is not that
hard).
(Computing the edges of the cut themselves, onces the vertex cut is known, can be easily done in O(m)
time.)
Note: You do not know what the value of k is!

2. (50 pts.) Disjoint paths.
Let G = (V,E) be a directed graph, with n vertices and m edges. Let s and t be two vertices in G. For

the sake of simplicity, assume that there are no u, v such that (u, v) and (v, u) are in G.
A set of paths P in G is edge disjoint if no two paths in P share an edge.

(A) (10 pts.) Let P be a set of k edge disjoint paths from s to t. Let π be a path from s to t (which is
not in P). Prove or disprove: There is a set P ′ of k edge disjoint paths from s to t in G that contains
π as one of the paths.

1Note that I see how hashing helps here.

1

(B) (10 pts.) Let P be a given set of edge disjoint paths from s to t. Let E(P) be the set of edges used
by the paths of P. The leftover graph GP is the graph where (u, v) ∈ E(GP) if (u, v) ∈ E(G) \ E(P)
or (v, u) ∈ E(P) (note that the edge (u, v) is the reverse edge of (v, u)).

Describe how to compute the leftover graph in O(m) time (no hashing please).
(C) (5 pts.) Let P be a set of k edge disjoint paths from s to t. Let π be a path in GP from s to t.

Prove that there is a set of P ′ of k+1 edge disjoint paths from s to t in G. In particular, show how to
compute P ′ given P and π in O(m) time. (For credit, your solution should be self contained and not
use min-cut max-flow theorem or network flow algorithms.)

(D) (5 pts.) The natural greedy algorithm for computing the maximum number of edge disjoint paths in
G, works by starting from an empty set of paths P0, then in the ith iteration, it finds a path πi in
the leftover graph GPi−1 from s to t, and then compute a set of i edge-disjoint paths Pi, by using the
algorithm of (C) on Pi−1 and πi.

Assume the algorithm stops in the (k+1)th iteration, because there is not path from s to t in GPk
.

We want to prove that the k edge-disjoint paths computed (i.e., Pk) is optimal, in the sense that there
is no larger set of edge-disjoint paths from s to t in G.

To this end, let S be the set of vertices that are reachable from s in GPk
. Let T = V(G)\S (observe

that t ∈ T). Prove, that every path in Pk contains exactly one edge of

(S, T) = {(u, v) ∈ E(G) | u ∈ S, v ∈ T} .

(Hint: Prove first that no path of Pk can use an edge of the “reverse” set (T, S).)
(E) (5 pts.) Consider the setting of (D). Prove that k = |Pk| = |(S, T)|.
(F) (5 pts.) Consider any set X of edge-disjoint paths in G from s to t. Prove that any path π of X must

contain at least one edge of (S, T).
(G) (5 pts.) Prove that the greedy algorithm described in (D) indeed computes the largest possible set of

edge-disjoint paths from s to t in G.
(H) (5 pts.) What is the running time of the algorithm in (D), if there are at most k edge-disjoint path

in G?

2

