NP Completeness and Cook-Levin Theorem

Lecture 22
November 18, 2014
P and **NP** and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” □.
5. Head can move only one cell to left or right.
A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

1. Q is a set of states in finite control.
2. q_0 is the start state, q_{accept} is the accept state, and q_{reject} is the reject state.
3. Σ is the input alphabet, and Γ is the tape alphabet (including \sqcup).
4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is the transition function where $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on the tape will move to state q' while replacing a on the tape with b and head moves left.

$L(M)$: The language accepted by M is the set of all input strings s on which M accepts; that is:

1. TM is started in state q_0.
2. Initially, the tape head is located at the first cell.
3. The tape contains s on the tape followed by blanks.
4. The TM halts in the state q_{accept}.
Definition

P via **TM**s

\[M \text{ is a polynomial time } \text{TM} \text{ if there is some polynomial } p(\cdot) \text{ such that on all inputs } w, M \text{ halts in } p(|w|) \text{ steps.} \]

Definition

L is a language in **P** iff there is a polynomial time **TM** \(M \) such that \(L = L(M) \).
NP via TMs

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time **TM** M such that $L = L(M)$.

Non-deterministic TM: each step has a choice of moves

1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
NP via TMs

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time TM M such that $L = L(M)$.

Non-deterministic TM: each step has a choice of moves

1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
Two definitions of \(\text{NP} \):

1. \(L \) is in \(\text{NP} \) iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
2. \(L \) is in \(\text{NP} \) iff \(L \) is decided by a non-deterministic polynomial time \(\text{TM} M \).

Claim

Two definitions are equivalent.

Why?
Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa.
In other words \(L \) is in \(\text{NP} \) iff \(L \) is accepted by a \(\text{NTM} \) which first guesses a proof \(t \) of length \(\text{poly} \) in input \(|s| \) and then acts as a deterministic \(\text{TM} \).
A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.

Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
Algorithms: **TMs vs RAM** Model

Why do we use **TMs** some times and **RAM** Model other times?

1. **TMs** are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - The “right” formal bare-bones model when dealing with subtleties.

2. **RAM** model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space
“Hardest” Problems

Question
What is the hardest problem in \textbf{NP}? How do we define it?

Towards a definition
1. Hardest problem must be in \textbf{NP}.
2. Hardest problem must be at least as “difficult” as every other problem in \textbf{NP}.
What is the hardest question in \(P \)?

Consider the class \(P \). The hardest problem in \(P \) is:

(A) Max-Flow.
(B) Linear programming.
(C) SAT.
(D) All problems in \(P \) are easy.
(E) All problems in \(P \) are hard.
A problem X is said to be **NP-Complete** if

1. $X \in \text{NP}$, and
2. (Hardness) For any $Y \in \text{NP}$, $Y \leq_P X$.

Definition
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in \text{NP}$. We know $Y \leq_P X$.
2. We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in \text{NP}$ is such that $Y \in \text{P}$; $\text{NP} \subseteq \text{P}$.
4. Since $\text{P} \subseteq \text{NP}$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in \text{NP}$, we have a polynomial time algorithm for X.

Alexandra (UIUC)
CS473 13
Fall 2014 13 / 54
NP-Hard Problems

Definition
A problem X is said to be **NP-Hard** if

1. (Hardness) For any $Y \in \text{NP}$, we have that $Y \leq_p X$.

An **NP-Hard** problem need not be in \text{NP}!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
Consequences of proving **NP-Completeness**

If X is **NP-Complete**

1. Since we believe $P \neq NP$, and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving \textbf{NP-Completeness}

If X is \textbf{NP-Complete}

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving **NP-Completeness**

If X is **NP-Complete**

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is likely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving \textbf{NP-Completeness}

If X is NP-Complete

1. Since we believe $P \neq NP$, and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
Circuits

Definition

A circuit is a directed acyclic graph with

1. Input vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled \(\lor, \land \) or \(\lnot \).
3. Single node output vertex with no outgoing edges.
A circuit is a directed *acyclic* graph with

1. Input vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled ∨, ∧ or ¬.
3. Single node output vertex with no outgoing edges.
A circuit is a directed *acyclic* graph with

1. **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled \(\lor, \land\) or \(\neg\).
3. Single node **output** vertex with no outgoing edges.

Definition

- **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
- Every other vertex is labelled \(\lor, \land\) or \(\neg\).
- Single node **output** vertex with no outgoing edges.
Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)
CSAT is NP-Complete.

Need to show
1. CSAT is in NP.
2. Every NP problem X reduces to CSAT.
Consider an instance of CSAT of size n, that does not contain any negations. This problem Monotone CSAT is

(A) NP-Hard.
(B) NP-Complete.
(C) P.
(D) Solvable in linear time.
(E) Solvable in $O(2^n)$ time.
Claim

\textbf{CSAT is in NP.}

1. **Certificate:** Assignment to input variables.
2. **Certifier:** Evaluate the value of each gate in a topological sort of \textit{DAG} and check the output gate value.
Claim

CSAT is in **NP**.

1. **Certificate**: Assignment to input variables.
2. **Certifier**: Evaluate the value of each gate in a topological sort of **DAG** and check the output gate value.
Assume any polynomial time algorithm can be converted into a boolean circuit in polynomial time. Then

(A) A certifier $C(s, t)$ is a polynomial algorithm, and as such there a boolean circuit of polynomial size that implements it.

(B) A certifier $C(s, t)$ can not be implemented as a circuit since t (the certificate) is not known.

(C) There are some certifiers (but not all) that can be implemented as a boolean circuit.

(D) Only certifiers for problems in P are convertible into circuits.
CSAT is **NP**-hard: Idea

Need to show that every **NP** problem \(X \) reduces to **CSAT**.

What does it mean that \(X \in \text{NP} \)?

\(X \in \text{NP} \) implies that there are polynomials \(p() \) and \(q() \) and certifier/verifier program \(C \) such that for every string \(s \) the following is true:

1. If \(s \) is a YES instance (\(s \in X \)) then there is a proof \(t \) of length \(p(|s|) \) such that \(C(s, t) \) says YES.
2. If \(s \) is a NO instance (\(s \not\in X \)) then for every string \(t \) of length at \(p(|s|) \), \(C(s, t) \) says NO.
3. \(C(s, t) \) runs in time \(q(|s| + |t|) \) time (hence polynomial time).
Reducing \(X \) to \textbf{CSAT}

\(X \) is in \textbf{NP} means we have access to \(p() \), \(q() \), \(C(\cdot, \cdot) \).
What is \(C(\cdot, \cdot) \)? It is a program or equivalently a Turing Machine!
How are \(p() \) and \(q() \) given? As numbers.
Example: if 3 is given then \(p(n) = n^3 \).

Thus an \textbf{NP} problem is essentially a three tuple \(\langle p, q, C \rangle \) where \(C \) is either a program or a \textbf{TM}.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an \textbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or \textbf{TM}.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm \mathcal{A} that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to $CSAT$

How do we reduce X to $CSAT$? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s).

2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.

3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)

2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.

3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)

2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.

3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing \(X \) to \textbf{CSAT}

How do we reduce \(X \) to \textbf{CSAT}? Need an algorithm \(A \) that

1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s|\) (note that \(\langle p, q, C \rangle \) are fixed).

2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert \(C(s, t) \) into a circuit \(G \) with \(t \) as unknown inputs (rest is known including \(s \))

2. We know that \(|t| = p(|s|)\) so express boolean string \(t \) as \(p(|s|) \) variables \(t_1, t_2, \ldots, t_k \) where \(k = p(|s|) \).

3. Asking if there is a proof \(t \) that makes \(C(s, t) \) say YES is same as whether there is an assignment of values to “unknown” variables \(t_1, t_2, \ldots, t_k \) that will make \(G \) evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm \mathcal{A} that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)

2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.

3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Example: **Independent Set**

1. **Problem:** Does \(G = (V, E) \) have an **Independent Set** of size \(\geq k \)?

 - **Certificate:** Set \(S \subseteq V \).
 - **Certifier:** Check \(|S| \geq k \) and no pair of vertices in \(S \) is connected by an edge.

Formally, why is **Independent Set** in \(\text{NP} \)?
Example: **Independent Set**

1. **Problem:** Does $G = (V, E)$ have an Independent Set of size $\geq k$?
 1. **Certificate:** Set $S \subseteq V$.
 2. **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

Formally, why is **Independent Set** in **NP**?
Example: **Independent Set**

Formally why is **Independent Set** in **NP**?

1. **Input:**

 \[< n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k > \]

 encodes \(< G, k > \).

 1. \(n \) is number of vertices in \(G \)
 2. \(y_{i,j} \) is a bit which is \(1 \) if edge \((i, j) \) is in \(G \) and \(0 \) otherwise (adjacency matrix representation)
 3. \(k \) is size of independent set.

2. **Certificate:** \(t = t_1 t_2 \ldots t_n \). Interpretation is that \(t_i \) is \(1 \) if vertex \(i \) is in the independent set, \(0 \) otherwise.
Certifier \(C(s, t) \) for Independent Set:

\[
\text{if } (t_1 + t_2 + \ldots + t_n < k) \text{ then}
\]
\[
\text{\quad return NO}
\]
\[
\text{else}
\]
\[
\text{\quad for each } (i, j) \text{ do}
\]
\[
\text{\quad \quad if } (t_i \land t_j \land y_{i,j}) \text{ then}
\]
\[
\text{\quad \quad \quad return NO}
\]
\[
\text{return YES}
\]
Example: Independent Set

A certifier circuit for Independent Set

Figure: Graph \(G \) with \(k = 2 \)
What does the following formula compute?

The formula

$$F(x_1, \ldots, x_n) = \bigwedge_{i<j} (\overline{x_i} \lor \overline{x_j})$$

is true if and only if

(A) All the x_is are one.
(B) All the x_is are zero.
(C) There are exactly two ones in x_1, \ldots, x_n.
(D) There is at most one bit one in x_1, \ldots, x_n.
(E) There are at most two ones in x_1, \ldots, x_n.

Alexandra (UIUC)
CS473
Fall 2014
What does the following formula compute?

The formula

\[H(x_1, \ldots, x_n) = \left(\bigwedge_{i<j} (x_i \lor x_j) \right) \land (x_1 \lor x_2 \lor \cdots \lor x_n). \]

is true if and only if

(A) All the \(x_i \)s are one.
(B) There are exactly two ones in \(x_1, \ldots, x_n \).
(C) There is exactly one bit one in \(x_1, \ldots, x_n \).
(D) There is at most one bit one in \(x_1, \ldots, x_n \).
(E) There are at most two ones in \(x_1, \ldots, x_n \).
What does the following formula compute?

$\langle G \rangle$: a vector of $\binom{n}{2}$ bits describing a graph with n vertices.

$I(x_1, \ldots, x_n, \langle G \rangle)$ formula true \iff x_1, \ldots, x_n independent set in G.

Input: $\langle x_1^1, x_1^2, x_1^3, x_2^1, x_2^2, x_2^3, \ldots, x_n^1, x_n^2, x_n^3, G \rangle$.

The formula

$$\left(\bigwedge_{i=1}^{n} H(x_i^1, x_i^2, x_i^3) \right) \land I(x_1^1, x_2^1, x_3^1, \ldots, x_n^1, \langle G \rangle) \land I(x_1^2, x_2^2, x_3^2, \ldots, x_n^2, \langle G \rangle) \land I(x_1^3, x_2^3, x_3^3, \ldots, x_n^3, \langle G \rangle)$$

is satisfiable if and only if

(A) The graph G contains a clique.
(B) The graph G can be colored by two colors.
(C) The graph G can be colored by three colors.
(D) The graph G encodes a satisfiable instance of 3DM.
(E) None of the above.
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with *polynomial* slow down
3. all moves are *local* (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with polynomial slow down
3. all moves are local (head moves only one cell)
Certifiers that are TMs

Assume \(C(\cdot, \cdot) \) is a (deterministic) Turing Machine \(M \)

Problem: Given \(M \), input \(s, p, q \) decide if there is a proof \(t \) of length \(p(|s|) \) such that \(M \) on \(s, t \) will halt in \(q(|s|) \) time and say YES.

There is an algorithm \(A \) that can reduce above problem to CSAT mechanically as follows.

1. \(A \) first computes \(p(|s|) \) and \(q(|s|) \).
2. Knows that \(M \) can use at most \(q(|s|) \) memory/tape cells
3. Knows that \(M \) can run for at most \(q(|s|) \) time
4. Simulates the evolution of the state of \(M \) and memory over time using a big circuit.
Think of M’s state at time ℓ as a string $x^\ell = x_1x_2\ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1. Use TM's as the code for certifier for simplicity.
2. Since \(p() \) and \(q() \) are known to \(A \), it can set up all required memory and time steps in advance.
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time.

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
Key Ideas in reduction:

1. Use TMs as the code for certifier for simplicity
2. Since \(p() \) and \(q() \) are known to \(\mathcal{A} \), it can set up all required memory and time steps in advance
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
To show **NP-Completeness**

Let X be a decision problem. We know that **CSAT** is **NP-Complete**.

To show that X is **NP-Complete** we need to:

- **(A)** Provide a polynomial time reduction from X to **CSAT**.
- **(B)** Provide a polynomial time reduction from X to **CSAT** and show that $X \in \text{NP}$.
- **(C)** Provide a polynomial time reduction from **CSAT** to X.
- **(D)** Provide a polynomial time reduction from **CSAT** to X and show that $X \in \text{NP}$.
- **(E)** Provide a polynomial time reduction from **CSAT** to X and show that $X \notin \text{P}$.
SAT is NP-Complete

We have seen that SAT \in NP

To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of CSAT (we label each node):

- Inputs: \(\neg, i\), \(\land, f\), \(\land, j\), \(\lor, g\), \(\lor, h\), \(1, a\), \(?b\), \(?c\), \(?d\), \(?e\)
- Output: \(\land, k\)
Converting a circuit into a **CNF** formula

Label the nodes

\[(A)\] Input circuit

\[(B)\] Label the nodes.
Converting a circuit into a **CNF** formula

Introduce a variable for each node

(B) Label the nodes.

(C) Introduce var for each node.
Converting a circuit into a **CNF** formula

Write a sub-formula for each variable that is true if the var is computed correctly.

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

\[
\begin{align*}
&x_k \quad \text{(Demand a sat’ assignment!)} \\
&x_k = x_i \land x_k \\
&x_j = x_g \land x_h \\
&x_i = \neg x_f \\
&x_h = x_d \lor x_e \\
&x_g = x_b \lor x_c \\
&x_f = x_a \land x_b \\
&x_d = 0 \\
&x_e = ?_e \\
&x_a = 1
\end{align*}
\]
Converting a circuit into a **CNF** formula

Convert each sub-formula to an equivalent **CNF** formula

<table>
<thead>
<tr>
<th>x_k</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_k = x_i \land x_j$</td>
<td>$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$</td>
</tr>
<tr>
<td>$x_j = x_g \land x_h$</td>
<td>$(\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h)$</td>
</tr>
<tr>
<td>$x_i = \neg x_f$</td>
<td>$(x_i \lor x_f) \land (\neg x_i \lor x_f)$</td>
</tr>
<tr>
<td>$x_h = x_d \lor x_e$</td>
<td>$(x_h \lor \neg x_d) \land (x_h \lor \neg x_e) \land (\neg x_h \lor x_d \lor x_e)$</td>
</tr>
<tr>
<td>$x_g = x_b \lor x_c$</td>
<td>$(x_g \lor \neg x_b) \land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c)$</td>
</tr>
<tr>
<td>$x_f = x_a \land x_b$</td>
<td>$(\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$</td>
</tr>
<tr>
<td>$x_d = 0$</td>
<td>$\neg x_d$</td>
</tr>
<tr>
<td>$x_a = 1$</td>
<td>x_a</td>
</tr>
</tbody>
</table>
Converting a circuit into a **CNF** formula

Take the conjunction of all the CNF sub-formulas

\[
\text{Inputs: } x_a, x_b, x_c, x_d, x_e, x_f, x_g, x_h, x_i, x_j, x_k
\]

\[
\text{Output: } \neg x_k \land x_i \land \neg x_k \lor \neg x_i \lor \neg x_j \land \neg x_j \lor x_g \land \neg x_j \lor x_h \land \neg x_j \lor x_g \lor x_h \land \neg x_j \lor x_g \lor x_h \land x_i \lor \neg x_f \land \neg x_i \lor x_f \land \neg x_h \lor x_d \land \neg x_h \lor \neg x_e \land \neg x_h \lor x_d \lor x_e \land x_g \lor \neg x_c \land \neg x_g \lor x_b \lor x_c \land \neg x_f \lor x_a \land \neg x_f \lor x_b \land x_f \lor \neg x_a \lor x_b \land \neg x_d \lor x_a
\]

We got a **CNF** formula that is satisfiable if and only if the original circuit is satisfiable.
Reduction: $\text{CSAT} \leq_p \text{SAT}$

1. For each gate (vertex) v in the circuit, create a variable x_v

2. Case \neg: v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In SAT formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v = \neg x_u \text{ is true} \iff (x_u \lor x_v) \land (\neg x_u \lor \neg x_v) \text{ both true.}$$
Case \lor: So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u)$, $(x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

$$
(x_v = x_u \lor x_w) \text{ is true} \iff (x_v \lor \neg x_u), (x_v \lor \neg x_w), (\neg x_v \lor x_u \lor x_w) \text{ all true}.
$$
Case \(\land \): So \(x_v = x_u \land x_w \). In \textbf{SAT} formula generated, add clauses \((\neg x_v \lor x_u) \), \((\neg x_v \lor x_w) \), and \((x_v \lor \neg x_u \lor \neg x_w) \). Again observe that

\[
x_v = x_u \land x_w \ \text{is true} \iff
(\neg x_v \lor x_u),
(\neg x_v \lor x_w),
(x_v \lor \neg x_u \lor \neg x_w)
\]

all true.
Reduction: $\text{CSAT} \leq_{P} \text{SAT}$

Continued...

1. If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v. If $x_v = 0$ add clause $\neg x_v$.

2. Add the clause x_v where v is the variable for the output gate.
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C

Theorem

SAT is NP-Complete.
Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1. Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

$\text{SAT} \leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

Transitivity of reductions:

$Y \leq_P \text{SAT}$ and $\text{SAT} \leq_P X$ and hence $Y \leq_P X$.
Proving that a problem X is **NP-Complete**

To prove X is **NP-Complete**, show

1. **Show X is in NP.**
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

2. **Reduction from a known **NP-Complete** problem such as CSAT or SAT to X**

$\text{SAT} \leq_p X$ implies that every **NP** problem $Y \leq_p X$. Why?

Transitivity of reductions:

$Y \leq_p \text{SAT}$ and $\text{SAT} \leq_p X$ and hence $Y \leq_p X$.
Proving that a problem X is **NP-Complete**

To prove X is **NP-Complete**, show

1. **Show X is in NP.**
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

2. **Reduction from a known **NP-Complete** problem such as **CSAT** or **SAT** to X**

$\text{SAT} \leq_{P} X$ implies that every **NP** problem $Y \leq_{P} X$. Why?

Transitivity of reductions:

$Y \leq_{P} \text{SAT}$ and $\text{SAT} \leq_{P} X$ and hence $Y \leq_{P} X$.
NP-Completeness via Reductions

1. CSAT is NP-Complete.
2. CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
3. SAT \leq_P 3-SAT and hence 3-SAT is NP-Complete.
4. 3-SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
5. Vertex Cover is NP-Complete.
6. Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
NP-Completeness via Reductions

1. CSAT is NP-Complete.
2. CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
3. SAT \leq_P 3-SAT and hence 3-SAT is NP-Complete.
4. 3-SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
5. Vertex Cover is NP-Complete.
6. Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!