Part I

Shortest Paths with Negative Length Edges
Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A *directed* graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.
Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A directed graph \(G = (V, E) \) with arbitrary (including negative) edge lengths. For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.

1. Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
2. Given node \(s \) find shortest path from \(s \) to all other nodes.
What are the distances computed by Dijkstra’s algorithm?

The distance as computed by Dijkstra algorithm starting from s:

(A) $s = 0$, $x = 5$, $y = 1$, $z = 0$.

(B) $s = 0$, $x = 1$, $y = 2$, $z = 5$.

(C) $s = 0$, $x = 5$, $y = 1$, $z = 2$.

(D) IDK.
Negative Length Cycles

Definition

A cycle \(C \) is a negative length cycle if the sum of the edge lengths of \(C \) is negative.
Negative Length Cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
Given $G = (V, E)$ with edge lengths and s, t. Suppose
1. G has a negative length cycle C, and
2. s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:
1. undefined, that is $-\infty$, OR
2. the length of a shortest simple path from s to t.

Lemma

If there is an efficient algorithm to find a shortest simple $s \rightarrow t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $s \rightarrow t$ path in a graph with positive edge lengths.

Finding the $s \rightarrow t$ longest path is difficult. **NP-Hard!**
Shortest Paths and Negative Cycles

Given $G = (V, E)$ with edge lengths and s, t. Suppose
1. G has a negative length cycle C, and
2. s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:
1. undefined, that is $-\infty$, OR
2. the length of a shortest simple path from s to t.

Lemma

If there is an efficient algorithm to find a shortest simple $s \to t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $s \to t$ path in a graph with positive edge lengths.

Finding the $s \to t$ longest path is difficult. NP-Hard!
Given a graph $G = (V, E)$:

1. A path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$.

2. A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. Vertices are allowed to repeat.

Define $\text{dist}(u, v)$ to be the length of a shortest walk from u to v.

1. If there is a walk from u to v that contains negative length cycle then $\text{dist}(u, v) = -\infty$

2. Else there is a path whose length is equal to the length of a shortest walk and $\text{dist}(u, v)$ is finite

Helpful to think about walks
Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph $G = (V, E)$ with edge lengths (could be negative). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

Questions:

1. Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.
2. Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all reachable nodes.
3. Check if G has a negative length cycle or not.
Note: With negative lengths, shortest path problems and negative cycle detection in undirected graphs cannot be reduced to directed graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and more involved than those for directed graphs. Beyond the scope of this class. If interested, ask instructor for references.
Why Negative Lengths?

Several Applications

1. Shortest path problems useful in modeling many situations — in some negative lengths are natural
2. Negative length cycle can be used to find arbitrage opportunities in currency trading
3. Important sub-routine in algorithms for more general problem: minimum-cost flow
Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the *exchange rate* for converting one unit of a into one unit of b.

Questions:

1. Is there an arbitrage opportunity?
2. Given currencies s, t what is the best way to convert s to t (perhaps via other intermediate currencies)?

Concrete example:

1. 1 Chinese Yuan = 0.1116 Euro
2. 1 Euro = 1.3617 US dollar
3. 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ \rightarrow$ Yuan \rightarrow Euro \rightarrow $, we get:

\[0.1116 \times 1.3617 \times 7.1 = 1.07896$. \]
Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading directed graph $G = (V, E)$:
1. For each currency i there is a node $v_i \in V$
2. $E = V \times V$: an edge for each pair of currencies
3. edge length $\ell(v_i, v_j) = -\log(\text{exch}(i, j))$ can be negative

Exercise: Verify that
1. There is an arbitrage opportunity if and only if G has a negative length cycle.
2. The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^{-d} units of j.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency \(i \) to \(j \) via intermediate currencies \(k_1, k_2, \ldots, k_h \) then one unit of \(i \) yields \(\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j) \) units of \(j \).

Create currency trading *directed* graph \(G = (V, E) \):
1. For each currency \(i \) there is a node \(v_i \in V \)
2. \(E = V \times V \): an edge for each pair of currencies
3. edge length \(\ell(v_i, v_j) = -\log(\text{exch}(i, j)) \) can be negative

Exercise: Verify that
1. There is an arbitrage opportunity if and only if \(G \) has a negative length cycle.
2. The best way to convert currency \(i \) to currency \(j \) is via a shortest path in \(G \) from \(i \) to \(j \). If \(d \) is the distance from \(i \) to \(j \) then one unit of \(i \) can be converted into \(2^{-d} \) units of \(j \).
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \times \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading *directed* graph $G = (V, E)$:

1. For each currency i there is a node $v_i \in V$
2. $E = V \times V$: an edge for each pair of currencies
3. edge length $\ell(v_i, v_j) = -\log(\text{exch}(i, j))$ can be negative

Exercise: Verify that

1. There is an arbitrage opportunity if and only if G has a negative length cycle.
2. The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^{-d} units of j.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency \(i \) to \(j \) via intermediate currencies \(k_1, k_2, \ldots, k_h \) then one unit of \(i \) yields

\[
exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)
\]

Create currency trading *directed* graph \(G = (V, E) \):

1. For each currency \(i \) there is a node \(v_i \in V \)
2. \(E = V \times V \): an edge for each pair of currencies
3. edge length \(\ell(v_i, v_j) = -\log(exch(i, j)) \) can be negative

Exercise: Verify that

1. There is an arbitrage opportunity if and only if \(G \) has a negative length cycle.
2. The best way to convert currency \(i \) to currency \(j \) is via a shortest path in \(G \) from \(i \) to \(j \). If \(d \) is the distance from \(i \) to \(j \) then one unit of \(i \) can be converted into \(2^{-d} \) units of \(j \).
1 \[\log(\alpha_1 \cdot \alpha_2 \cdot \cdots \cdot \alpha_k) = \log \alpha_1 + \log \alpha_2 + \cdots + \log \alpha_k. \]

2 \[\log x > 0 \text{ if and only if } x > 1. \]
Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph $G = (V, E)$ with edge lengths (could be negative). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

Questions:

1. Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.

2. Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all reachable nodes.

3. Check if G has a negative length cycle or not.
With negative length edges, Dijkstra’s algorithm can fail.
With negative length edges, Dijkstra’s algorithm can fail.
With negative length edges, Dijkstra’s algorithm can fail.
Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

![Graph with edges and vertices](image-url)
Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

\[s \rightarrow 5 \rightarrow x \rightarrow -5 \rightarrow w \]
\[y \]

\[s \rightarrow 5 \rightarrow x \rightarrow -5 \rightarrow w \]
\[2 \rightarrow 3 \]

Alexandra (UIUC)
CS473
Fall 2014
With negative length edges, Dijkstra’s algorithm can fail.
With negative length edges, Dijkstra’s algorithm can fail.
Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

False assumption: Dijkstra’s algorithm is based on the assumption that if \(s = v_0 \rightarrow v_1 \rightarrow v_2 \ldots \rightarrow v_k \) is a shortest path from \(s \) to \(v_k \) then \(\text{dist}(s, v_i) \leq \text{dist}(s, v_{i+1}) \) for \(0 \leq i < k \). Holds true only for non-negative edge lengths.
Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

1. $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
2. False: $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

1. $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
2. False: $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
Lemma

Let \(G \) be a directed graph with arbitrary edge lengths. If \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \) is a shortest path from \(s \) to \(v_k \), then for \(1 \leq i < k \):

1. \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i \) is a shortest path from \(s \) to \(v_i \)
2. **False**: \(\text{dist}(s, v_i) \leq \text{dist}(s, v_k) \) for \(1 \leq i < k \). Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
A Generic Shortest Path Algorithm

1. Start with distance estimate for each node $d(s, u)$ set to ∞.
2. Maintain the invariant that there is an $s \rightarrow u$ path of length $d(s, u)$. Hence $d(s, u) \geq \text{dist}(s, u)$.
3. Iteratively refine $d(s, \cdot)$ values until they reach the correct value $\text{dist}(s, \cdot)$ values at termination.

Must hold that...

$$d(s, v) \leq d(s, u) + \ell(u, v)$$
Question: How do we make progress?

Definition

Given distance estimates $d(s, u)$ for each $u \in V$, an edge $e = (u, v)$ is **tense** if $d(s, v) > d(s, u) + \ell(u, v)$.

Relax ($e = (u, v)$)

if $(d(s, v) > d(s, u) + \ell(u, v))$ then

$d(s, v) = d(s, u) + \ell(u, v)$
A Generic Shortest Path Algorithm

Question: How do we make progress?

Definition

Given distance estimates $d(s, u)$ for each $u \in V$, an edge $e = (u, v)$ is **tense** if $d(s, v) > d(s, u) + \ell(u, v)$.

Relax $e = (u, v)$ if $(d(s, v) > d(s, u) + \ell(u, v))$ then $d(s, v) = d(s, u) + \ell(u, v)$.
Question: How do we make progress?

Definition

Given distance estimates $d(s, u)$ for each $u \in V$, an edge $e = (u, v)$ is **tense** if $d(s, v) > d(s, u) + \ell(u, v)$.

Relax $(e = (u, v))$

if $(d(s, v) > d(s, u) + \ell(u, v))$ then

$$d(s, v) = d(s, u) + \ell(u, v)$$
A Generic Shortest Path Algorithm

Invariant
If a vertex \(u \) has value \(d(s, u) \) associated with it, then there is a \(s \leadsto u \) walk of length \(d(s, u) \).

Proposition
Relax maintains the invariant on \(d(s, u) \) values.

Proof.
Indeed, if Relax\((u, v)\) changed the value of \(d(s, v) \), then there is a walk to \(u \) of length \(d(s, u) \) (by invariant), and there is a walk of length \(d(s, u) + \ell(u, v) \) to \(v \) through \(u \), which is the new value of \(d(s, v) \).
A Generic Shortest Path Algorithm

\[d(s, s) = 0 \]

\[
\text{for each node } u \neq s \text{ do} \\
\quad d(s, u) = \infty
\]

\[
\text{while there is a tense edge do} \\
\quad \text{Pick a tense edge } e \\
\quad \text{Relax}(e)
\]

Output \(d(s, u) \) values

Technical assumption: If \(e = (u, v) \) is an edge and \(d(s, u) = d(s, v) = \infty \) then edge is not tense.
Key property of generic algorithm
If estimate distance from source too large, then \(\exists \) tense edge...

Lemma

If \(\exists \) walk \(\pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u \) such that

\[
\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u)
\]

Then, there exists a tense edge in \(G \).

Proof.

Assume \(\pi \): shortest in number of edges (with property).

\[
\Rightarrow \ell(v_1 \rightarrow \cdots v_{k-1}) \geq d(s, v_{k-1}).
\]

\[
\Rightarrow d(s, v_{k-1}) + \ell(v_{k-1}, v_k)
\]

\[
\leq \ell(v_1 \rightarrow \cdots v_{k-1}) + \ell(v_{k-1}, v_k)
\]

\[
= \ell(\pi) < d(s, u).
\]

\[
\Rightarrow d(s, v_{k-1}) + \ell(v_{k-1}, v_k) < d(s, v_k)
\]

\[
\Rightarrow \text{edge } (v_{k-1}, v_k) \text{ is tense.}
\]
Key property of generic algorithm
If estimate distance from source too large, then \exists tense edge...

Lemma
If \exists walk $\pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u$ such that
\[\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u) \]
Then, there exists a tense edge in G.

Proof.
Assume π: shortest in number of edges (with property).
\[\iff \ell(v_1 \rightarrow \cdots v_{k-1}) \geq d(s, v_{k-1}). \]
\[\iff d(s, v_{k-1}) + \ell(v_{k-1}, v_k) \leq \ell(v_1 \rightarrow \cdots v_{k-1}) + \ell(v_{k-1}, v_k) \]
\[= \ell(\pi) < d(s, v_k). \]
\[\iff d(s, v_{k-1}) + \ell(v_{k-1}, v_k) < d(s, v_k) \]
\[\iff \text{edge} (v_{k-1}, v_k) \text{ is tense}. \]
Key property of generic algorithm

If estimate distance from source too large, then \exists tense edge...

Lemma

If \exists walk \pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u such that

\[\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u) \]

Then, there exists a tense edge in \(G \).

Proof.

Assume \(\pi \): shortest in number of edges (with property).

\[\implies \ell(v_1 \rightarrow \cdots v_{k-1}) \geq d(s, v_{k-1}) \]

\[\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) \leq \ell(v_1 \rightarrow \cdots v_{k-1}) + \ell(v_{k-1}, v_k) \]

\[= \ell(\pi) < d(s, v_k). \]

\[\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) < d(s, v_k) \]

\[\implies \text{edge} (v_{k-1}, v_k) \text{ is tense.} \]
Key property of generic algorithm

If estimate distance from source too large, then \(\exists \) tense edge...

Lemma

If \(\exists \) walk \(\pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u \) such that

\[
\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u)
\]

Then, there exists a tense edge in \(G \).

Proof.

Assume \(\pi \): shortest in number of edges (with property).

\[
\implies \ell(v_1 \rightarrow \cdots v_{k-1}) \geq d(s, v_{k-1}).
\]

\[
\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) \\
\leq \ell(v_1 \rightarrow \cdots v_{k-1}) + \ell(v_{k-1}, v_k) \\
= \ell(\pi) < d(s, v_k).
\]

\[
\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) < d(s, v_k)
\]

\[
\implies \text{edge} (v_{k-1}, v_k) \text{ is tense.}
\]
Key property of generic algorithm

If estimate distance from source too large, then ∃ tense edge...

Lemma

If ∃ walk \(\pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u \) such that

\[
\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u)
\]

Then, there exists a tense edge in \(G \).

Proof.

Assume \(\pi \): shortest in number of edges (with property).

\[
\implies \ell(v_1 \rightarrow \cdots v_{k-1}) \geq d(s, v_{k-1}).
\]

\[
\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) \\
\leq \ell(v_1 \rightarrow \cdots v_{k-1}) + \ell(v_{k-1}, v_k) \\
= \ell(\pi) < d(s, v_k).
\]

\[
\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) < d(s, v_k)
\]

\[
\implies \text{edge } (v_{k-1}, v_k) \text{ is tense.}
\]
Lemma

If \(\exists \) walk \(\pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u \) such that

\[
\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u)
\]

Then, there exists a tense edge in \(G \).

Proof.

Assume \(\pi \): shortest in number of edges (with property).

\[
\implies \ell(v_1 \rightarrow \cdots v_{k-1}) \geq d(s, v_{k-1}).
\]

\[
\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k)
\]

\[
\leq \ell(v_1 \rightarrow \cdots v_{k-1}) + \ell(v_{k-1}, v_k)
\]

\[
= \ell(\pi) < d(s, v_k).
\]

\[
\implies d(s, v_{k-1}) + \ell(v_{k-1}, v_k) < d(s, v_k)
\]

\[
\implies \text{edge } (v_{k-1}, v_k) \text{ is tense.}
\]
Key property of generic algorithm
If estimate distance from source too large, then \exists tense edge...

Lemma

If \exists walk $\pi \equiv s = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = u$ such that

$$\ell(\pi) = \sum_{i=1}^{k-1} \ell(v_i, v_j) < d(s, u)$$

Then, there exists a tense edge in G.

Proof.

Assume π: shortest in number of edges (with property).

\[
\vdots
\]

\implies edge (v_{k-1}, v_k) is tense.

\implies If for any vertex u: $d(s, u) > \text{dist}(s, u)$ then the algorithm will continue working!
Properties of the generic algorithm

Proposition

If u is reachable from s and algorithm terminates then $d(s, u) \neq \infty$.

Proof.

Corollary of key property.

Proposition

If u is not reachable from s then $d(s, u)$ remains at ∞ throughout the algorithm.
Properties of the generic algorithm

Proposition

If u is reachable from s and algorithm terminates then $d(s, u) \neq \infty$.

Proof.

Corollary of key property.

Proposition

If u is not reachable from s then $d(s, u)$ remains at ∞ throughout the algorithm.
Properties of the generic algorithm

Proposition

If a negative length cycle C is reachable by s then there is always a tense edge and hence the algorithm never terminates.
Properties of the generic algorithm

Proposition

If a negative length cycle C is reachable by s then there is always a tense edge and hence the algorithm never terminates.

Proof.

Also corollary of key property. If algorithm terminates then for each node $u \in C$, $d(s, u)$ is a finite value, however there is a walk of length $< d(s, u)$ — in fact for any finite value.
Properties of the generic algorithm

Proposition

If a negative length cycle \(C \) is reachable by \(s \) then there is always a tense edge and hence the algorithm never terminates.

A more direct proof.

Let \(C = v_0, v_1, \ldots, v_k \) be a negative length cycle reachable from \(s \). Suppose algorithm terminates. By previous proposition, \(d(s, v_i) < \infty \) for all \(i \). Since no edge of \(C \) was tense, for \(i = 1, 2, \ldots, k \) we have \(d(s, v_i) \leq d(s, v_{i-1}) + \ell(v_{i-1}, v_i) \) and \(d(s, v_0) \leq d(s, v_k) + \ell(v_k, v_0) \). Adding up all the inequalities we obtain that length of \(C \) is non-negative!

Corollary

Alg. terminates implies no negative length cycle \(C \) reachable from \(s \).
Lemma

If the algorithm terminates then \(d(s, u) = \text{dist}(s, u) \) for each node \(u \) (and \(s \) cannot reach a negative cycle).

Proof follows from key property.

Question: How do we ensure termination?
Properties of the generic algorithm

Lemma

If the algorithm terminates then $d(s, u) = \text{dist}(s, u)$ for each node u (and s cannot reach a negative cycle).

Proof follows from key property.

Question: How do we ensure termination?
Generic Algorithm: Ordering Relax operations

\[d(s, s) = 0 \]

for each node \(u \neq s \) do
 \[d(s, u) = \infty \]

While there is a tense edge do
 Pick a tense edge \(e \)
 Relax\((e) \)

Output \(d(s, u) \) values for \(u \in V(G) \)

Question: How do we pick edges to relax?

Observation: Suppose \(s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k \) is a shortest path.

If Relax\((s, v_1) \), Relax\((v_1, v_2) \), \ldots, Relax\((v_{k-1}, v_k) \) are done in order then \(d(s, v_k) = \text{dist}(s, v_k) \)!
Generic Algorithm: Ordering Relax operations

\[d(s,s) = 0 \]

for each node \(u \neq s \) do
\[d(s,u) = \infty \]

While there is a tense edge do
\begin{align*}
&\text{Pick a tense edge } e \\
&\text{Relax}(e)
\end{align*}

Output \(d(s, u) \) values for \(u \in V(G) \)

Question: How do we pick edges to relax?

Observation: Suppose \(s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k \) is a shortest path.

If \(\text{Relax}(s, v_1), \text{Relax}(v_1, v_2), \ldots, \text{Relax}(v_{k-1}, v_k) \) are done in order then \(d(s, v_k) = \text{dist}(s, v_k) \)!
Ordering Relax operations

1. **Observation:** Suppose $s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$ is a shortest path.

 If $\text{Relax}(s, v_1), \text{Relax}(v_1, v_2), \ldots, \text{Relax}(v_{k-1}, v_k)$ are done in order then $d(s, v_k) = \text{dist}(s, v_k)$! (Why?)

2. We don’t know the shortest paths so how do we know the order to do the Relax operations?
Observation: Suppose $s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$ is a shortest path. If $\text{Relax}(s, v_1), \text{Relax}(v_1, v_2), \ldots, \text{Relax}(v_{k-1}, v_k)$ are done in order then $d(s, v_k) = \text{dist}(s, v_k)$! (Why?)

We don’t know the shortest paths so how do we know the order to do the Relax operations?
Ordering Relax operations

1. We don’t know the shortest paths so how do we know the order to do the Relax operations?

2. We don’t!

 1. Relax all edges (even those not tense) in some arbitrary order
 2. Iterate $|V| - 1$ times
 3. First iteration will do $\text{Relax}(s, v_1)$ (and other edges), second round $\text{Relax}(v_1, v_2)$ and in iteration k we do $\text{Relax}(v_{k-1}, v_k)$.
Ordering Relax operations

1. We don’t know the shortest paths so how do we know the order to do the Relax operations?
2. We don’t!
 1. Relax all edges (even those not tense) in some arbitrary order
 2. Iterate $|V| - 1$ times
 3. First iteration will do Relax(s, v_1) (and other edges), second round Relax(v_1, v_2) and in iteration k we do Relax(v_{k-1}, v_k).
Bellman-Ford Algorithm

for each \(u \in V \) do
 \(d(s, u) \leftarrow \infty \)

\(d(s, s) \leftarrow 0 \)

for \(i = 1 \) to \(|V| - 1\) do
 for each edge \(e = (u, v) \) do
 Relax(e)

for each \(u \in V \) do
 \(\text{dist}(s, u) \leftarrow d(s, u) \)
Bellman-Ford Algorithm: Scanning Edges

One possible way to scan edges in each iteration.

\[\text{Q is an empty queue} \]
\[\text{for each } u \in V \text{ do} \]
\[\quad d(s, u) = \infty \]
\[\quad \text{enq}(Q, u) \]
\[d(s, s) = 0 \]

\[\text{for } i = 1 \text{ to } |V| - 1 \text{ do} \]
\[\quad \text{for } j = 1 \text{ to } |V| \text{ do} \]
\[\quad \quad u = \text{deq}(Q) \]
\[\quad \quad \text{for each edge } e \text{ in } \text{Adj}(u) \text{ do} \]
\[\quad \quad \quad \text{Relax}(e) \]
\[\quad \quad \text{enq}(Q, u) \]

\[\text{for each } u \in V \text{ do} \]
\[\quad \text{dist}(s, u) = d(s, u) \]
Example

Step 0

\[
\begin{aligned}
&d & e & f \\
\infty & -8 & 2 \\
\infty & 1 & 0 \\
\infty & -3 & 5 \\
\infty & 8 & -1 \\
\infty & 4 & 3 \\
\infty & 6 & 0 \\
\infty & & c
\end{aligned}
\]
Example

Step 0

Step 1
Example

Step 1

Step 2
Example

Step 2

Step 3

\[\Rightarrow \]
Example

Step 3

Step 4

\Rightarrow
Example

Step 4

Step 5

\[\text{Alexandra (UIUC)}\]
Example

Step 5

Step 6
Example

Step 6

Step 7

\Rightarrow
Example

Step 7

Step 8
Example

Step 8

Step 9

\[\begin{align*}
\text{Step 8} & \quad \begin{array}{c}
\text{Step 9}
\end{array} \\
\begin{array}{c}
\text{Step 8}
\end{array} & \quad \begin{array}{c}
\text{Step 9}
\end{array}
\end{align*} \]
Example

Step 9

Step 10
Example

Step 10

Step 11
Example

Step 11

We are done! No edge is tense.
Figure: One iteration of Bellman-Ford that Relaxes all edges by processing nodes in the order s, a, b, c, d, e, f. Red edges indicate the prev pointers (in reverse).
Figure: 6 iterations of Bellman-Ford starting with the first one from previous slide. No changes in 5th iteration and 6th iteration.
Correctness of the Bellman-Ford Algorithm

Lemma

After \(i \) iterations of the Bellman-Ford algorithm, for each \(v \in V \), \(d(s, v) \) is length of shortest walk from \(s \) to \(v \) with at most \(i \) hops.

Proof.

By induction on \(i \).

1. **Base case:** \(i = 0. \ d(s, s) = 0 \) and \(d(s, v) = \infty \) for all \(v \neq s \).

2. **Induction Step:** Let \(s \rightarrow v_1 \ldots \rightarrow v_j \rightarrow v \) be a shortest walk from \(s \) to \(v \) with at most \(i \) hops. Let \(\alpha \) be its length.

 1. If \(j < i - 1 \), then by induction, after \(i - 1 \) iterations \(d(s, v) \leq \alpha \) (Why?)

 2. If \(j = i - 1 \), then by induction, after \(i - 1 \) iterations \(d(s, v_{i-1}) \) is equal to length of walk \(s \rightarrow v_1 \ldots \rightarrow v_{i-1} \). (Why?)

3. In iteration \(i \), \(\text{Relax}(v_{i-1}, v_i) \) will ensure that \(d(s, v_i) \leq \alpha \).

4. **Note:** Relax does not increase \(d(s, u) \) value.
Correctness of Bellman-Ford Algorithm

Corollary

After $|V| - 1$ iterations of Bellman-Ford, $d(s, u) = \text{dist}(s, u)$ for any node u such that $\text{dist}(s, u) > -\infty$.

Proof.

If $\text{dist}(s, u) > -\infty$ then there exists a shortest walk from s to u with finite number of hops. In particular it will be a path (since any cycle on the walk cannot be negative, otherwise $\text{dist}(s, u) = -\infty$) and hence has at most $n - 1$ hops.

Note: If there is a negative cycle C such that s can reach C then we do not know whether $d(s, u) = \text{dist}(s, u)$ or whether $\text{dist}(s, u) = \infty$!

Question: How do we know whether there is a negative cycle C reachable from s?
Correctness of Bellman-Ford Algorithm

Corollary

After \(|V| - 1\) iterations of Bellman-Ford, \(d(s, u) = dist(s, u)\) for any node \(u\) such that \(dist(s, u) > -\infty\).

Proof.

If \(dist(s, u) > -\infty\) then there exists a shortest walk from \(s\) to \(u\) with finite number of hops. In particular it will be a path (since any cycle on the walk cannot be negative, otherwise \(dist(s, u) = -\infty\)) and hence has at most \(n - 1\) hops.

Note: If there is a negative cycle \(C\) such that \(s\) can reach \(C\) then we do not know whether \(d(s, u) = dist(s, u)\) or whether \(dist(s, u) = \infty\)!

Question: How do we know whether there is a negative cycle \(C\) reachable from \(s\)?
Correctness of Bellman-Ford Algorithm

Corollary

After $|V| - 1$ iterations of Bellman-Ford, $d(s, u) = \text{dist}(s, u)$ for any node u such that $\text{dist}(s, u) > -\infty$.

Proof.

If $\text{dist}(s, u) > -\infty$ then there exists a shortest walk from s to u with finite number of hops. In particular it will be a path (since any cycle on the walk cannot be negative, otherwise $\text{dist}(s, u) = -\infty$) and hence has at most $n - 1$ hops.

Note: If there is a negative cycle C such that s can reach C then we do not know whether $d(s, u) = \text{dist}(s, u)$ or whether $\text{dist}(s, u) = \infty$!

Question: How do we know whether there is a negative cycle C reachable from s?
Bellman-Ford to detect Negative Cycles

for each $u \in V$ do
 $d(s, u) = \infty$
 $d(s, s) = 0$

for $i = 1$ to $|V| - 1$ do
 for each edge $e = (u, v)$ do
 Relax(e)

for each edge $e = (u, v)$ do
 if $e = (u, v)$ is tense then
 Stop and output that s can reach a negative length cycle

Output for each $u \in V$: $d(s, u)$
Correctness

Lemma

\textbf{G} has a negative cycle reachable from \textbf{s} if and only if there is a tense edge \textbf{e} after \(|\mathbf{V}| - 1\) iterations of Bellman-Ford.

Proof Sketch.

\textbf{G} has no negative length cycle reachable from \textbf{s} implies that all nodes \textbf{u} reachable from \textbf{s} have \(\text{dist}(s, u) > -\infty\). Therefore \(d(s, u) = \text{dist}(s, u)\) after the \(|\mathbf{V}| - 1\) iterations. Therefore, there cannot be any tense edges left.

If there is a negative cycle \textbf{C} then there is a tense edge after \(|\mathbf{V}| - 1\) (in fact any number of) iterations. Recall key property of the generic shortest path algorithm.
Correctness

Lemma

G has a negative cycle reachable from **s** if and only if there is a tense edge **e** after \(|V| - 1\) iterations of Bellman-Ford.

Proof Sketch.

G has no negative length cycle reachable from **s** implies that all nodes **u** reachable from **s** have \(\text{dist}(s, u) > -\infty\). Therefore \(d(s, u) = \text{dist}(s, u)\) after the \(|V| - 1\) iterations. Therefore, there cannot be any tense edges left.

If there is a negative cycle **C** then there is a tense edge after \(|V| - 1\) (in fact any number of) iterations. Recall key property of the generic shortest path algorithm.
Finding the Paths and a Shortest Path Tree

```
for each \( u \in V \) do
    \( d(s, u) = \infty \)
    \( \text{prev}(u) = \text{null} \)
\( d(s, s) = 0 \)
for \( i = 1 \) to \(|V| - 1\) do
    for each edge \( e = (u, v) \) do
        Relax\( (e) \)
    if there is a tense edge \( e \) then
        Output that \( s \) can reach a negative cycle \( C \)
    else
        for each \( u \in V \) do
            output \( d(s, u) \)

Relax\( (e = (u, v)) \)
    if \( (d(s, v) > d(s, u) + \ell(u, v)) \) then
        \( d(s, v) = d(s, u) + \ell(u, v) \)
        \( \text{prev}(v) = u \)
```

Note: \(\text{prev} \) pointers induce a shortest path tree.
Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

1. Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may be negative cycles not reachable from s.

2. Run Bellman-Ford $|V|$ times, once from each node u?
Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

1. Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may be negative cycles not reachable from s.

2. Run Bellman-Ford $|V|$ times, once from each node u?
Negative Cycle Detection

1. Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will find a negative length cycle if there is one. **Exercise:** why does this work?

2. Negative cycle detection can be done with one Bellman-Ford invocation.
Running time for Bellman-Ford

1. Input graph $G = (V, E)$ with $m = |E|$ and $n = |V|$.
2. n outer iterations and m $\text{Relax}()$ operations in each iteration. Each $\text{Relax}()$ operation is $O(1)$ time.
3. Total running time: $O(mn)$.

Note: Algorithm can be safely stopped if no tense edge in some iteration. Why?
Running time for Bellman-Ford

1. Input graph $G = (V, E)$ with $m = |E|$ and $n = |V|$.
2. n outer iterations and m Relax() operations in each iteration. Each Relax() operation is $O(1)$ time.
3. Total running time: $O(mn)$.

Note: Algorithm can be safely stopped if no tense edge in some iteration. Why?
Dijkstra as an instantiation of the generic algorithm

The Dijkstra algorithm can be stated as the generic algorithm as:

(A) Relax all tense edges.
(B) Always relax the edge \((u, v)\), such that \(d(s, u)\) is minimal.
(C) Pick \(u\) minimizing \(d(s, u)\) such that \(u\) was not visited yet. Mark as visited, and relax all its outgoing edges.
(D) Pick an unvisited \(u\). Mark as visited, and relax all its outgoing edges.
Dijkstra’s Algorithm with Relax()

\[
\begin{align*}
\text{for each node } u \neq s \text{ do} & \\
\quad d(s, u) = \infty & \\
\quad d(s, s) = 0 & \\
S = \emptyset & \\
\text{while } (S \neq V) \text{ do} & \\
\quad \text{Let } v \text{ be node in } V - S \text{ with min } d \text{ value} & \\
\quad S = S \cup \{v\} & \\
\quad \text{for each edge } e \text{ in Adj}(v) \text{ do} & \\
\quad\quad \text{Relax}(e) & \\
\end{align*}
\]
Part II

Shortest Paths in DAGs
Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed **acyclic** graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

Simplification of algorithms for **DAGs**

1. No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges.
2. Can order nodes using topological sort.
Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1. No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges
2. Can order nodes using topological sort
Algorithm for DAGs

1. Want to find shortest paths from s. Ignore nodes not reachable from s.

2. Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

Observation:

1. shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n

2. can find shortest paths in topological sort order.
Algorithm for DAGs

1. Want to find shortest paths from s. Ignore nodes not reachable from s.
2. Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

Observation:

1. shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
2. can find shortest paths in topological sort order.
Algorithm for DAGs

\[
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{d}(s, v_i) = \infty \\
\text{d}(s, s) = 0 \\
\text{for } i = 1 \text{ to } n - 1 \text{ do} \\
\quad \text{for each edge } e \text{ in } \text{Adj}(v_i) \text{ do} \\
\quad \quad \text{Relax}(e) \\
\text{return } \text{d}(s, \cdot) \text{ values computed}
\]

Correctness: induction on \(i \) and observation in previous slide.
Running time: \(O(n + m) \) time algorithm! Works for negative edge lengths and hence can find longest paths in a DAG.
Takeaway Points

1. Shortest paths with potentially negative length edges arise in a variety of applications. Longest simple path problem is difficult (no known efficient algorithm and **NP-Hard**). We restrict attention to shortest walks and they are well defined only if there are no negative length cycles reachable from the source.

2. A generic shortest path algorithm starts with distance estimates to the source and iteratively refines them by considering edges one at a time. The algorithm is guaranteed to terminate with correct distances if there are no negative length cycle. If a negative length cycle is reachable from the source it is guaranteed not to terminate.

3. Dijkstra’s algorithm can also be thought of as an instantiation of the generic algorithm.
1. Bellman-Ford algorithm is an instantiation of the generic algorithm that in each iteration relaxes all the edges. It recognizes negative length cycles if there is a tense edges in the nth iteration. For a vertex u with a shortest path to the source with i edges the algorithm has the correct distance after i iterations. Running time of Bellman-Ford algorithm is $O(nm)$.

2. Bellman-Ford can be adapted to find a negative length cycle in the graph by adding a new vertex.

3. If we have a DAG then it has no negative length cycle and hence shortest paths exists even with negative lengths. One can compute single-source shortest paths in a DAG in linear time. This implies that one can also compute longest paths in a DAG in linear time.