1. A longest common subsequence of a set of strings \(\{ A_i \} \) is a longest string that is a subsequence of \(A_i \) for each \(i \). For example, \texttt{algorithm} and \texttt{altruistic}.

Given two strings \(A[1..n] \) and \(B[1..n] \), describe and analyze a fast dynamic programming algorithm that computes the length of a longest common subsequence of the two strings.

2. Describe and analyze a fast dynamic programming algorithm that computes the length of a longest common subsequence of three strings \(A[1..n] \), \(B[1..n] \), and \(C[1..n] \).

3. A lucky-10 number is a string \(D[1..n] \) of digits from 1 to 9 (no zeros), such that the \(i \)-th digit and the last \(i \)-th digit sum up to 10; in another words, \(D[i] + D[n - i + 1] = 10 \) for all \(i \). For example, \(3141592648159697 \) and \(11599 \) are both lucky-10 numbers. Given a string of digits \(D[1..n] \), describe and analyze a dynamic programming algorithm that computes the length of a longest lucky-10 subsequence of the string. [Hint: Try to use your solution to problem 1 directly.]

4. To think about later: Can you solve problem 1 in \(O(n) \) space?