Review session

Lecture 99
September 22, 2011
Why Graphs?

- Graphs help model networks which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links) etc etc.
- Fundamental objects in Computer Science, Optimization, Combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep mathematics
Basic Graph Search

Given $G = (V, E)$ and vertex $u \in V$:

Explore(u):

1. Initialize $S = \{u\}$
2. while there is an edge (x, y) with $x \in S$ and $y \not\in S$ do
 3. add y to S
DFS in Directed Graphs

DFS(G)

Mark all nodes u as unvisited

T is set to \emptyset

$time = 0$

while there is an unvisited node u do

 DFS(u)

Output T

DFS(u)

Mark u as visited

$pre(u) = ++ time$

for each edge (u, v) in $Out(u)$ do

 if v is not marked

 add edge (u, v) to T

 DFS(v)

$post(u) = ++ time$
Node u is **active** in time interval $[\text{pre}(u), \text{post}(u)]$.

Proposition

For any two nodes u and v, the two intervals $[\text{pre}(u), \text{post}(u)]$ and $[\text{pre}(v), \text{post}(v)]$ are disjoint or one is contained in the other.
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.

![Graph Diagram](image-url)
Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v?
- Given G and u, compute $rch(u)$.
- Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.
- Find the strongly connected component containing node u, that is $SCC(u)$.
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

First four problems can be solve in $O(n + m)$ time by adapting BFS/DFS to directed graphs. The last one requires a clever DFS based algorithm.
DFS Properties

Generalizing ideas from undirected graphs:

- **DFS**\((u)\) outputs a directed out-tree **T** rooted at **u**
- A vertex **v** is in **T** if and only if **v** ∈ rch\((u)\)
- For any two vertices **x**, **y** the intervals \([\text{pre}(x), \text{post}(x)]\) and \([\text{pre}(y), \text{post}(y)]\) are either disjoint are one is contained in the other.
- The running time of **DFS**\((u)\) is \(O(k)\) where \(k = \sum_{v \in \text{rch}(u)} |\text{Adj}(v)|\) plus the time to initialize the Mark array.
- **DFS**\((G)\) takes \(O(m + n)\) time. Edges in **T** form a disjoint collection of out-trees. Output of **DFS**\((G)\) depends on the order in which vertices are considered.
Edges of G can be classified with respect to the DFS tree T as:

- **Tree edges** that belong to T

- A **forward edge** is a non-tree edges (x, y) such that $\text{pre}(x) < \text{pre}(y) < \text{post}(y) < \text{post}(x)$.

- A **backward edge** is a non-tree edge (x, y) such that $\text{pre}(y) < \text{pre}(x) < \text{post}(x) < \text{post}(y)$.

- A **cross edge** is a non-tree edges (x, y) such that the intervals $[\text{pre}(x), \text{post}(x)]$ and $[\text{pre}(y), \text{post}(y)]$ are disjoint.
Algorithms via **DFS**

SC\((G, u)\) = \{v \mid u \text{ is strongly connected to } v\}

- Find the strongly connected component containing node \(u\). That is, compute **SCC**\((G, u)\).

\[
\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)
\]

Hence, **SCC**\((G, u)\) can be computed with two **DFS**es, one in \(G\) and the other in \(G^{\text{rev}}\). Total \(O(n + m)\) time.
Algorithm via DFS

\[SC(G, u) = \{ v \mid u \text{ is strongly connected to } v \} \]

- Find the strongly connected component containing node \(u \). That is, compute \(SCC(G, u) \).

\[SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u) \]

Hence, \(SCC(G, u) \) can be computed with two DFSes, one in \(G \) and the other in \(G^{rev} \). Total \(O(n + m) \) time.
Linear Time Algorithm

...for computing the strong connected components in G

do $\text{DFS}(G^\text{rev})$ and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
 if u is not visited then
 $\text{DFS}(u)$
 Let S_u be the nodes reached by u
 Output S_u as a strong connected component
 Remove S_u from G

Analysis

Running time is $O(n + m)$. (Exercise)

Example: Makefile
BFS with Distances

BFS

Mark all vertices as unvisited and for each v set $\text{dist}(v) = \infty$

Initialize search tree T to be empty

Mark vertex s as visited and set $\text{dist}(s) = 0$

set Q to be the empty queue

$$\text{enq}(s)$$

while Q is nonempty do

\[u = \text{deq}(Q) \]

for each vertex $v \in \text{Adj}(u)$ do

\[\text{if } v \text{ is not visited do} \]

\[\text{add edge } (u, v) \text{ to } T \]

Mark v as visited, $\text{enq}(v)$

and set $\text{dist}(v) = \text{dist}(u) + 1$

Proposition

BFS(s) runs in $O(n + m)$ time.
BFS with Layers

BFS\text{Layers}(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}

 $i = i + 1$

Running time: $O(n + m)$
BFS with Layers

BFS\text{Layers}(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}

 $i = i + 1$

Running time: $O(n + m)$
Checking if a graph is bipartite...

Linear time algorithm

Corollary

There is an $O(n + m)$ time algorithm to check if G is bipartite and output an odd cycle if it is not.
Dijkstra’s Algorithm

Initialize for each node v, $\text{dist}(s, v) = \infty$

Initialize $S = \{s\}$, $\text{dist}(s, s) = 0$

for $i = 1$ to $|V|$ do

Let v be such that $\text{dist}(s, v) = \min_{u \in V \setminus S} \text{dist}(s, u)$

$S = S \cup \{v\}$

for each u in $\text{Adj}(v)$ do

$\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

- Using Fibonacci heaps. Running time: $O(m + n \log n)$.
- Can compute shortest path tree.
Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A *directed* graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
A Generic Shortest Path Algorithm

Dijkstra’s algorithm does not work with negative edges.

\[\text{Relax}(e = (u, v)) \]
\[\text{if } (d(s, v) > d(s, u) + \ell(u, v)) \text{ then} \]
\[d(s, v) = d(s, u) + \ell(u, v) \]

\[d(s, s) = 0 \]
for each node \(u \neq s \) do
\[d(s, u) = \infty \]

while there is a tense edge do
Pick a tense edge \(e \)
Relax \((e) \)

Output \(d(s, u) \) values
Bellman-Ford to detect Negative Cycles

for each $u \in V$ do
 $d(s, u) = \infty$
 $d(s, s) = 0$

for $i = 1$ to $|V| - 1$ do
 for each edge $e = (u, v)$ do
 Relax(e)

for each edge $e = (u, v)$ do
 if $e = (u, v)$ is tense then
 Stop and output that s can reach a negative length cycle

Output for each $u \in V$: $d(s, u)$

- Total running time: $O(mn)$.
- Can detect negative cycle reachable from s.
- With appropriate construction - can detect any negative cycle in a graph.
Shortest paths in DAGs

Algorithm for DAGs

\textbf{ShorestPathInDAG}(G, s):

\begin{itemize}
 \item $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

 \item for $i = 1$ to n do
 \begin{itemize}
 \item $d(s, v_i) = \infty$
 \item $d(s, s) = 0$
 \end{itemize}

 \item for $i = 1$ to $n - 1$ do
 \begin{itemize}
 \item for each edge e in Adj(v_i) do
 \begin{itemize}
 \item Relax(e)
 \end{itemize}
 \end{itemize}

 \item return $d(s, \cdot)$ values computed
\end{itemize}

Running time: $O(m + n)$ time algorithm! Works for negative edge lengths and hence can find \textit{longest} paths in a DAG.
Reduction

Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a *black box*.
- Example: Uniqueness (or distinct element) to sorting.
Recursion

- Recursion is a very powerful and fundamental technique.
- Basis for several other methods.
 - Divide and conquer.
 - Dynamic programming.
 - Enumeration and branch and bound etc.
 - Some classes of greedy algorithms.
- Recurrences arise in analysis.

Examples seen:

- Recursion: Tower of Hanoi, Selection sort, Quick Sort.
- Divide & Conquer:
 - Merge sort.
 - Multiplying large numbers.
Solving recurrences using recursion trees

An illustrated example...
Solving recurrences using recursion trees

An illustrated example...

Work in each node
Solving recurrences using recursion trees

An illustrated example...

Work in each node
Solving recurrences using recursion trees
An illustrated example...

\[
\begin{align*}
\log n \left\{ \begin{array}{c}
\frac{cn}{2} + \frac{cn}{2} = cn \\
\frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} = cn \\
\vdots \\
= cn
\end{array} \right.
\end{align*}
\]
Solving recurrences using recursion trees

An illustrated example...

\[\log n \left\{ \begin{array}{l}
\frac{cn}{2} + \frac{cn}{2} \\
\frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} \\
\vdots
\end{array} \right\} = c n \log n = O(n \log n) \]
Solving recurrences
The other “technique” - guess and verify

- Guess solution to recurrence.
- Verify it via induction.

Solved in class:

- \(T(n) = 2T(n/2) + n/ \log n \).
- \(T(n) = T(\sqrt{n}) + 1 \).
- \(T(n) = \sqrt{n}T(\sqrt{n}) + n \).
- \(T(n) = T(n/4) + T(3n/4) + n \)
Closest Pair - the problem

Input
Given a set S of n points on the plane

Goal
Find $p, q \in S$ such that $d(p, q)$ is minimum

Algorithm:
One can compute closest pair points in the plane in $O(n \log n)$ time using divide and conquer.
Closest Pair - the problem

Input Given a set S of n points on the plane
Goal Find $p, q \in S$ such that $d(p, q)$ is minimum

Algorithm:
One can compute closest pair points in the plane in $O(n \log n)$ time using divide and conquer.
Median selection

Problem

Given list L of n numbers, and a number k find kth smallest number in n.

- Quick Sort can be modified to solve it (but worst case running time is quadratic (if lucky linear time).
- Seen divide & conquer algorithm...
 Involved, but linear running time.
Recursive algorithm for Selection

A feast for recursion

select(*A*, *j*):

\[n = |A| \]

if \(n \leq 10 \) then

Compute \(j \)th smallest element in \(A \) using brute force.

Form lists \(L_1, L_2, \ldots, L_{\lceil n/5 \rceil} \) where \(L_i = \{A[5i-4], \ldots, A[5i]\} \)

Find median \(b_i \) of each \(L_i \) using brute-force

\(B \) is the array of \(b_1, b_2, \ldots, b_{\lceil n/5 \rceil} \).

\(b = \text{select}(B, \lceil n/10 \rceil) \)

Partition \(A \) into \(A_{\text{less or equal}} \) and \(A_{\text{greater}} \) using \(b \) as pivot

if \(|A_{\text{less or equal}}| = j \) then

return \(b \)

if \(|A_{\text{less or equal}}| > j \) then

\(\text{return select}(A_{\text{less or equal}}, j) \)

else

\(\text{return select}(A_{\text{greater}}, j - |A_{\text{less or equal}}|) \)
Back to Recursion

Seen some simple recursive algorithms:

- Binary search.
- Fast exponentiation.
- Fibonacci numbers.
- Maximum weight independent set.