Chapter 24

c-co-NP, Self-Reduction,
Approximation Algorithms

CS 473: Fundamental Algorithms, Fall 2011
April 26, 2011

24.1 Complementation and Self-Reduction

24.2 Complementation

24.2.1 Recap
24.2.1.1 The class P

(A) A language L (equivalently decision problem) is in the class P if there is a polynomial time algorithm A for deciding L; that is given a string x, A correctly decides if $x \in L$ and running time of A on x is polynomial in $|x|$, the length of x.

24.2.1.2 The class NP

Two equivalent definitions:
(A) Language L is in NP if there is a non-deterministic polynomial time algorithm A (Turing Machine) that decides L.
 (A) For $x \in L$, A has some non-deterministic choice of moves that will make A accept x
 (B) For $x \notin L$, no choice of moves will make A accept x
(B) L has an efficient certifier $C(\cdot, \cdot)$.
 (A) C is a polynomial time deterministic algorithm
 (B) For $x \in L$ there is a string y (proof) of length polynomial in $|x|$ such that $C(x, y)$ accepts
 (C) For $x \notin L$, no string y will make $C(x, y)$ accept
24.2.1.3 Complementation

Definition 24.2.1 Given a decision problem \(X\), its complement \(\overline{X}\) is the collection of all instances \(s\) such that \(s \notin L(X)\).

Equivalently, in terms of languages:

Definition 24.2.2 Given a language \(L\) over alphabet \(\Sigma\), its complement \(\overline{L}\) is the language \(\Sigma^* - L\).

24.2.1.4 Examples

(A) \(\text{PRIME} = \{n \mid n\text{ is an integer and } n\text{ is prime}\}\)

\(\overline{\text{PRIME}} = \{n \mid n\text{ is an integer and } n\text{ is not a prime}\}\).

(B) \(\text{SAT} = \{\varphi \mid \varphi\text{ is a CNF formula and } \varphi\text{ is satisfiable}\}\)

\(\overline{\text{SAT}} = \{\varphi \mid \varphi\text{ is a CNF formula and } \varphi\text{ is not satisfiable}\}\).

\(\text{SAT} = \overline{\text{UnSAT}}\).

Technicality: \(\text{SAT}\) also includes strings that do not encode any valid CNF formula. Typically we ignore those strings because they are not interesting. In all problems of interest, we assume that it is “easy” to check whether a given string is a valid instance or not.

24.2.1.5 \(P\) is closed under complementation

Proposition 24.2.3 Decision problem \(X\) is in \(P\) if and only if \(\overline{X}\) is in \(P\).

Proof:

(A) If \(X\) is in \(P\) let \(A\) be a polynomial time algorithm for \(X\).

(B) Construct polynomial time algorithm \(A'\) for \(\overline{X}\) as follows: given input \(x\), \(A'\) runs \(A\) on \(x\) and if \(A\) accepts \(x\), \(A'\) rejects \(x\) and if \(A\) rejects \(x\) then \(A'\) accepts \(x\).

(C) Only if direction is essentially the same argument.

24.2.2 Motivation

24.2.2.1 Asymmetry of NP

Definition 24.2.4 Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Observation

To show that a problem is in NP we only need short, efficiently checkable certificates for “yes”-instances. What about “no”-instances?

Given a CNF formula \(\varphi\), is \(\varphi\) unsatisfiable?

Easy to give a proof that \(\varphi\) is satisfiable (an assignment) but no easy (known) proof to show that \(\varphi\) is unsatisfiable!
24.2.2.2 Examples

Some languages
(A) **UnSAT**: CNF formulas \(\varphi \) that are not satisfiable
(B) **No-Hamilton-Cycle**: graphs \(G \) that do not have a Hamilton cycle
(C) **No-3-Color**: graphs \(G \) that are not 3-colorable

Above problems are complements of known NP problems (viewed as languages).

24.2.3 co-NP Definition

24.2.3.1 NP and co-NP

NP
Decision problems with a polynomial certifier.
Examples: **SAT**, **Hamiltonian Cycle**, **3-Colorability**.

Definition 24.2.5 co-NP is the class of all decision problems \(X \) such that \(\overline{X} \in \text{NP} \).
Examples: **UnSAT**, **No-Hamiltonian-Cycle**, **No-3-Colorable**.

24.2.4 Relationship between \(P \), \(NP \) and co-NP

24.2.4.1 co-NP

If \(L \) is a language in co-NP then there is a polynomial time certifier/verifier \(C(\cdot,\cdot) \), such that:
(A) for \(s \notin L \) there is a proof \(t \) of size polynomial in \(|s| \) such that \(C(s,t) \) correctly says NO
(B) for \(s \in L \) there is no proof \(t \) for which \(C(s,t) \) will say NO

co-NP has checkable proofs for strings NOT in the language.

24.2.4.2 Natural Problems in co-NP

(A) **Tautology**: given a Boolean formula (not necessarily in CNF form), is it true for all possible assignments to the variables?
(B) **Graph expansion**: given a graph \(G \), is it an expander? A graph \(G = (V,E) \) is an expander iff for each \(S \subseteq V \) with \(|S| \leq |V|/2 \), \(|N(S)| \geq |S| \). Expanders are very important graphs in theoretical computer science and mathematics.

24.2.4.3 \(P \), \(NP \), co-NP

co-P: complement of P. Language \(X \) is in co-P iff \(\overline{X} \in P \)

Proposition 24.2.6 \(P = \text{co-P} \).

Proposition 24.2.7 \(P \subseteq \text{NP} \cap \text{co-NP} \).

Saw that \(P \subseteq \text{NP} \). Same proof shows \(P \subseteq \text{co-NP} \).
24.2.4.4 P, NP, and co-NP

Open Problems:
(A) Does NP = co-NP? Consensus opinion: No
(B) Is P = NP ∩ co-NP? No real consensus

24.2.4.5 P, NP, and co-NP

Proposition 24.2.8 If P = NP then NP = co-NP.

Proof: P = co-P
If P = NP then co-NP = co-P = P.

Corollary 24.2.9 If NP ≠ co-NP then P ≠ NP.

Importance of corollary: try to prove P ≠ NP by proving that NP ≠ co-NP.

24.2.4.6 NP ∩ co-NP

Complexity Class NP ∩ co-NP
Problems in this class have
(A) Efficient certifiers for yes-instances
(B) Efficient disqualifiers for no-instances
Problems have a good characterization property, since for both yes and no instances we have short efficiently checkable proofs

24.2.4.7 NP ∩ co-NP: Example

Example 24.2.10 Bipartite Matching: Given bipartite graph G = (U ∪ V, E), does G have a perfect matching?
Bipartite Matching ∈ NP ∩ co-NP
(A) If G is a yes-instance, then proof is just the perfect matching
(B) If G is a no-instance, then by Hall’s Theorem, there is a subset of vertices A ⊆ U such that |N(A)| < |A|
24.2.4.8 Good Characterization \neq Efficient Solution

(A) Bipartite Matching has a polynomial time algorithm
(B) Do all problems in $\text{NP} \cap \text{co-NP}$ have polynomial time algorithms? That is, is $\text{P} = \text{NP} \cap \text{co-NP}$?
 Problems in $\text{NP} \cap \text{co-NP}$ have been proved to be in P many years later
 (A) Linear programming (Khachiyan 1979)
 (A) Duality easily shows that it is in $\text{NP} \cap \text{co-NP}$
 (B) Primality Testing (Agarwal-Kayal-Saxena 2002)
 (A) Easy to see that PRIME is in co-NP (why?)
 (B) PRIME is in NP - not easy to show! (Vaughan Pratt 1975)

24.2.4.9 $\text{P} \neq \text{NP} \cap \text{co-NP}$ (contd)

(A) Some problems in $\text{NP} \cap \text{co-NP}$ still cannot be proved to have polynomial time algorithms
 (A) Parity Games
 (B) Other more specialized problems

24.2.4.10 co-NP Completeness

Definition 24.2.11 A problem X is said to be co-NP-Complete (co-NPC) if
(A) $X \in \text{co-NP}$
(B) (Hardness) For any $Y \in \text{co-NP}$, $Y \leq_p X$

co-NP-Complete problems are the hardest problems in co-NP.

Lemma 24.2.12 X is co-NPC if and only if \overline{X} is NP-Complete.

Proof left as an exercise.

24.2.4.11 P, NP and co-NP

Possible scenarios:
(A) $\text{P} = \text{NP}$. Then $\text{P} = \text{NP} = \text{co-NP}$.
(B) $\text{NP} = \text{co-NP}$ and $\text{P} \neq \text{NP}$ (and hence also $\text{P} \neq \text{co-NP}$).
(C) $\text{NP} \neq \text{co-NP}$. Then $\text{P} \neq \text{NP}$ and also $\text{P} \neq \text{co-NP}$.
 Most people believe that the last scenario is the likely one.
 Question: Suppose $\text{P} \neq \text{NP}$. Is every problem that is in $\text{NP}\setminus\text{P}$ also NP-Complete?

Theorem 24.2.13 (Ladner) If $\text{P} \neq \text{NP}$ then there is a problem/language $X \in \text{NP} \setminus \text{P}$
such that X is not NP-Complete.
24.3 Self Reduction

24.3.1 Introduction

24.3.1.1 Back to Decision versus Search

(A) Recall, decision problems are those with yes/no answers, while search problems require an explicit solution for a yes instance.

Example 24.3.1 (A) Satisfiability

(A) Decision: Is the formula φ satisfiable?

(B) Search: Find assignment that satisfies φ

(B) Graph coloring

(A) Decision: Is graph G 3-colorable?

(B) Search: Find a 3-coloring of the vertices of G

24.3.1.2 Decision “reduces to” Search

(A) Efficient algorithm for search implies efficient algorithm for decision

(B) If decision problem is difficult then search problem is also difficult

(C) Can an efficient algorithm for decision imply an efficient algorithm for search?

Yes, for all the problems we have seen. In fact for all NP-COMPLETE Problems.

24.3.2 Self Reduction

24.3.2.1 Self Reduction

Definition 24.3.2 A problem is said to be self reducible if the search problem reduces (by Cook reduction) in polynomial time to decision problem. In other words, there is an algorithm to solve the search problem that has polynomially many steps, where each step is either

(A) A conventional computational step, or

(B) A call to subroutine solving the decision problem.

24.3.3 SAT is Self Reducible

24.3.3.1 Back to SAT

Proposition 24.3.3 SAT is self reducible.

In other words, there is a polynomial time algorithm to find the satisfying assignment if one can periodically check if some formula is satisfiable.

24.3.3.2 Search Algorithm for SAT from a Decision Algorithm for SAT

Input: SAT formula φ with n variables x_1, x_2, \ldots, x_n.

(A) set $x_1 = 0$ in φ and get new formula φ_1. check if φ_1 is satisfiable using decision algorithm. if φ_1 is satisfiable, recursively find assignment to x_2, x_3, \ldots, x_n that satisfy φ_1 and output $x_1 = 0$ along with the assignment to x_2, \ldots, x_n.
(B) if φ_1 is not satisfiable then set $x_1 = 1$ in φ to get formula φ_2. if φ_2 is satisfiable, recursively find assignment to x_2, x_3, \ldots, x_n that satisfy φ_2 and output $x_1 = 1$ along with the assignment to x_2, \ldots, x_n.

(C) if φ_1 and φ_2 are both not satisfiable then φ is not satisfiable.

Algorithm runs in polynomial time if the decision algorithm for SAT runs in polynomial time. At most 2^n calls to decision algorithm.

24.3.3.3 Self-Reduction for NP-Complete Problems

Theorem 24.3.4 Every NP-COMPLETE problem/language L is self-reducible.

Proof out of scope.

Note that proof is only for complete languages, not for all languages in NP. Otherwise Factoring would be in polynomial time and we would not rely on it for our current security protocols.

Easy and instructive to prove self-reducibility for specific NP-COMPLETE problems such as Independent Set, Vertex Cover, Hamiltonian Cycle, etc.

See discussion section problems.