NP Completeness and Cook-Levin Theorem

Lecture 22
April 19, 2011

P and NP and Turing Machines

- **P**: set of decision problems that have polynomial time algorithms.
- **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
Turing Machines: Recap

- Infinite tape.
- Finite state control.
- Input at beginning of tape.
- Special tape letter “blank” \(\square\).
- Head can move only one cell to left or right.

Turing Machines: Formally

A Turing Machine \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\):

- \(Q\) is set of states in finite control
- \(q_0\) start state, \(q_{\text{accept}}\) is accept state, \(q_{\text{reject}}\) is reject state
- \(\Sigma\) is input alphabet, \(\Gamma\) is tape alphabet (includes \(\square\))
- \(\delta: Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q\) is transition function
 - \(\delta(q, a) = (q', b, L)\) means that \(M\) in state \(q\) and head seeing \(a\) on tape will move to state \(q'\) while replacing \(a\) on tape with \(b\) and head moves left.

\(L(M)\): language accepted by \(M\) is set of all input strings \(s\) on which \(M\) accepts; that is:

- \(TM\) is started in state \(q_0\).
- Initially, the tape head is located at the first cell.
- The tape contain \(s\) on the tape followed by blanks.
- The \(TM\) halts in the state \(q_{\text{accept}}\).
P via TMs

Definition

\(M \) is a polynomial time TM if there is some polynomial \(p(\cdot) \) such that on all inputs \(w \), \(M \) halts in \(p(|w|) \) steps.

Definition

\(L \) is a language in P iff there is a polynomial time TM \(M \) such that \(L = L(M) \).

NP via TMs

Definition

\(L \) is an NP language iff there is a non-deterministic polynomial time TM \(M \) such that \(L = L(M) \).

Non-deterministic TM: each step has a choice of moves

- \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \).
- Example: \(\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\} \) means that \(M \) can non-deterministically choose one of the three possible moves from \((q, a) \).

- \(L(M) \): set of all strings \(s \) on which there exists some sequence of valid choices at each step that lead from \(q_0 \) to \(q_{\text{accept}} \).
Non-deterministic \(TMs \) vs certifiers

NP

Two definition of \(NP \):

- \(L \) is in \(NP \) iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
- \(L \) is in \(NP \) iff \(L \) is decided by a non-deterministic polynomial time \(TM \) \(M \).

Claim

Two definitions are equivalent.

Why?

Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa.

In other words \(L \) is in \(NP \) iff \(L \) is accepted by a \(NTM \) which first guesses a proof \(t \) of length poly in input \(|s|\) and then acts as a deterministic \(TM \).

Non-determinism, guessing and verification

- A non-deterministic machine has choices at each step and accepts a string if there *exists* a set of choices which lead to a final state.
- Equivalently the choices can be thought of as *guessing* a solution and then *verifying* that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.
- We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
Why do we use TMs some times and RAM Model other times?

- **TMs** are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - The “right” formal bare-bones model when dealing with subtleties.

- **RAM** model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space

“Hardest” Problems

Question

What is the hardest problem in \(\text{NP} \)? How do we define it?

Towards a definition

- Hardest problem must be in \(\text{NP} \).
- Hardest problem must be at least as “difficult” as every other problem in \(\text{NP} \).
NP-Complete Problems

Definition

A problem \(X \) is said to be **NP-Complete** if

1. \(X \in \text{NP} \), and
2. (Hardness) For any \(Y \in \text{NP} \), \(Y \leq_p X \).

Solving **NP-Complete** Problems

Proposition

*Suppose \(\mathbf{X} \) is **NP-Complete**. Then \(\mathbf{X} \) can be solved in polynomial time if and only if \(P = \text{NP} \).*

Proof.

\(\Rightarrow \) Suppose \(\mathbf{X} \) can be solved in polynomial time

- Let \(Y \in \text{NP} \). We know \(Y \leq_p \mathbf{X} \).
- We showed that if \(Y \leq_p \mathbf{X} \) and \(\mathbf{X} \) can be solved in polynomial time, then \(Y \) can be solved in polynomial time.
- Thus, every problem \(Y \in \text{NP} \) is such that \(Y \in \text{P} \); \(\text{NP} \subseteq \text{P} \).
- Since \(\text{P} \subseteq \text{NP} \), we have \(\text{P} = \text{NP} \).

\(\Leftarrow \) Since \(\text{P} = \text{NP} \), and \(\mathbf{X} \in \text{NP} \), we have a polynomial time algorithm for \(\mathbf{X} \).
NP-Hard Problems

Definition

A problem X is said to be **NP-Hard** if

- (Hardness) For any $Y \in \text{NP}$, $Y \leq_p X$

An **NP-Hard** problem need not be in **NP**!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

Consequences of proving NP-Completeness

If X is **NP-Complete**

- Since we believe $P \neq \text{NP}$,
- and solving X implies $P = \text{NP}$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Question
Are there any problems that are **NP-Complete**?

Answer
Yes! Many, many problems are **NP-Complete**.

Circuits

Definition

A circuit is a directed *acyclic* graph with

- **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable
- Every other vertex is labelled \(\lor, \land \) or \(\neg \)
- Single node **output** vertex with no outgoing edges
Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is **NP-Complete**.

Need to show
- **CSAT** is in **NP**
- *every* **NP** problem X reduces to **CSAT**.

CSAT: Circuit Satisfaction

Claim

CSAT is in **NP**.

- **Certificate**: Assignment to input variables.
- **Certifier**: Evaluate the value of each gate in a topological sort of **DAG** and check the output gate value.
CSAT is NP-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that $X \in \text{NP}$?

$X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
- If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
- $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).

Reducing X to CSAT

X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine! How are $p()$ and $q()$ given? As numbers. Example: if 3 is given then $p(n) = n^3$.

Thus an NP problem is essentially a three tuple $< p, q, C >$ where C is either a program or a TM.
Reducing \(X \) to \(\text{CSAT} \)

Thus an \(\text{NP} \) problem is essentially a three tuple \(< p, q, C >\) where \(C \) is either a program or \(\text{TM} \).

Problem X: Given string \(s \), is \(s \in X \)?

Same as the following: is there a proof \(t \) of length \(p(|s|) \) such that \(C(s, t) \) says YES.

How do we reduce \(X \) to \(\text{CSAT} \)? Need an algorithm \(\mathcal{A} \) that

- takes \(s \) (and \(< p, q, C >\)) and creates a circuit \(G \) in polynomial time in \(|s|\) (note that \(< p, q, C >\) are fixed).
- \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES.

Simple but Big Idea: Programs are essentially the same as Circuits!

- Convert \(C(s, t) \) into a circuit \(G \) with \(t \) as unknown inputs (rest is known including \(s \))
- We know that \(|t| = p(|s|)\) so express boolean string \(t \) as \(p(|s|) \) variables \(t_1, t_2, \ldots, t_k \) where \(k = p(|s|) \).
- Asking if there is a proof \(t \) that makes \(C(s, t) \) say YES is same as whether there is an assignment of values to “unknown” variables \(t_1, t_2, \ldots, t_k \) that will make \(G \) evaluate to true/YES.
Example: **Independent Set**

- **Problem:** Does $G = (V, E)$ have an Independent Set of size $\geq k$?
 - **Certificate:** Set $S \subseteq V$
 - **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge

Formally, why is **Independent Set** in **NP**?

Formally why is **Independent Set** in **NP**?

- **Input:**
 $< n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k >$
 encodes $< G, k >$.
 - n is number of vertices in G
 - $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
 - k is size of independent set.

- **Certificate:** $t = t_1 t_2 \ldots t_n$. Interpretation is that t_i is 1 if vertex i is in the independent set, 0 otherwise.
Certifier for **Independent Set**

Certifier $C(s, t)$ for **Independent Set**:

```plaintext
if \((t_1 + t_2 + \ldots + t_n < k)\) then
  return NO
else
  for each \((i, j)\) do
    if \((t_i \land t_j \land y_{i,j})\) then
      return NO

return YES
```

Example: Independent Set

Figure: Graph G with $k = 2$
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does step mean?
Real computers difficult to reason with mathematically because
- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines
- simpler model of computation to reason with
- can simulate real computers with *polynomial* slow down
- all moves are *local* (head moves only one cell)
Certifiers that at TMs

Assume \(C(\cdot, \cdot) \) is a (deterministic) Turing Machine \(M \)

Problem: Given \(M \), input \(s, p, q \) decide if there is a proof \(t \) of length \(p(|s|) \) such that \(M \) on \(s, t \) will halt in \(q(|s|) \) time and say YES.

There is an algorithm \(A \) that can reduce above problem to \text{CSAT} mechanically as follows.

- \(A \) first computes \(p(|s|) \) and \(q(|s|) \).
- Knows that \(M \) can use at most \(q(|s|) \) memory/tape cells
- Knows that \(M \) can run for at most \(q(|s|) \) time
- Simulates the evolution of the state of \(M \) and memory over time using a big circuit.

Simulation of Computation via Circuit

- Think of \(M \)'s state at time \(\ell \) as a string \(x^\ell = x_1 x_2 \ldots x_k \) where each \(x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\} \).
- At time 0 the state of \(M \) consists of input string \(s \) a guess \(t \) (unknown variables) of length \(p(|s|) \) and rest \(q(|s|) \) blank symbols.
- At time \(q(|s|) \) we wish to know if \(M \) stops in \(q_{\text{accept}} \) with say all blanks on the tape.
- We write a circuit \(C_\ell \) which captures the transition of \(M \) from time \(\ell \) to time \(\ell + 1 \).
- Composition of the circuits for all times 0 to \(q(|s|) \) gives a big (still poly) sized circuit \(C \)
- The final output of \(C \) should be true if and only if the entire state of \(M \) at the end leads to an accept state.
NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:
- Use TMs as the code for certifier for simplicity
- Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
- Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.

SAT is NP-Complete

- We have seen that SAT \in NP
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of CSAT (we label each node):

```
\( \neg, i \quad \neg, j \quad \neg, k \)
\( \land, f \quad \land, g \quad \land, h \)
\( \land, a, b \quad \land, c, d \quad \land, e \)
\( \land, k \)
```

Inputs:

```
1, a \quad ? , b \quad ? , c \quad 1, d \quad ? , e
```
Converting a circuit into a CNF formula

Label the nodes

Introduce a variable for each node

(B) Label the nodes.

(C) Introduce var for each node.
Converting a circuit into a **CNF** formula

Write a sub-formula for each variable that is true if the var is computed correctly.

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

<table>
<thead>
<tr>
<th>x_k</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_k = x_i \land x_j)</td>
<td>((\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j))</td>
</tr>
<tr>
<td>(x_j = x_g \land x_h)</td>
<td>((\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h) \land)</td>
</tr>
<tr>
<td>(x_i = \neg x_f)</td>
<td>((x_i \lor x_f) \land (\neg x_i \lor x_f) \land)</td>
</tr>
<tr>
<td>(x_h = x_d \lor x_e)</td>
<td>((x_h \lor \neg x_d) \land (x_h \lor \neg x_e) \land (\neg x_h \lor x_d \lor x_e))</td>
</tr>
<tr>
<td>(x_g = x_b \lor x_c)</td>
<td>((x_g \lor \neg x_b) \land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c))</td>
</tr>
<tr>
<td>(x_f = x_a \land x_b)</td>
<td>((\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b))</td>
</tr>
<tr>
<td>(x_d = 0)</td>
<td>(\neg x_d)</td>
</tr>
<tr>
<td>(x_a = 1)</td>
<td>(x_a)</td>
</tr>
</tbody>
</table>
Converting a circuit into a **CNF** formula

Take the conjunction of all the CNF sub-formulas

\[
x_k \land (\neg x_k \lor x_i) \land (\neg x_k \lor x_j)
\land (x_k \lor \neg x_i \lor \neg x_j) \land (\neg x_j \lor x_g)
\land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h)
\land (x_i \lor x_f) \land (\neg x_i \lor x_f)
\land (x_h \lor \neg x_d) \land (x_h \lor \neg x_e)
\land (\neg x_h \lor x_d \lor x_e) \land (x_g \lor \neg x_b)
\land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c)
\land (\neg x_f \lor x_a) \land (\neg x_f \lor x_b)
\land (x_f \lor \neg x_a \lor \neg x_b) \land (\neg x_d \lor x_a)
\]

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: \(\text{CSAT} \leq_p \text{SAT} \)

- For each gate (vertex) \(v \) in the circuit, create a variable \(x_v \)
- **Case** \(\neg \): \(v \) is labeled \(\neg \) and has one incoming edge from \(u \) (so \(x_v = \neg x_u \)). In SAT formula generate, add clauses \((x_u \lor x_v) \), \((\neg x_u \lor \neg x_v) \). Observe that

\[
x_v = \neg x_u \text{ is true } \iff (x_u \lor x_v) \text{ and } (\neg x_u \lor \neg x_v) \text{ both true.}
\]
\textbf{Case }\lor: \text{ So } x_v = x_u \lor x_w. \text{ In SAT formula generated, add clauses } (x_v \lor \neg x_u), (x_v \lor \neg x_w), \text{ and } (\neg x_v \lor x_u \lor x_w). \text{ Again, observe that}

\[x_v = x_u \lor x_w \text{ is true } \iff (x_v \lor \neg x_u), (x_v \lor \neg x_w), \text{ all true.} \]

\textbf{Case }\land: \text{ So } x_v = x_u \land x_w. \text{ In SAT formula generated, add clauses } (\neg x_v \lor x_u), (\neg x_v \lor x_w), \text{ and } (x_v \lor \neg x_u \lor \neg x_w). \text{ Again observe that}

\[x_v = x_u \land x_w \text{ is true } \iff (\neg x_v \lor x_u), (\neg x_v \lor x_w), \text{ all true.} \]
If v is an input gate with a fixed value then we do the following.
If $x_v = 1$ add clause x_v. If $x_v = 0$ add clause $\neg x_v$
- Add the clause x_v where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable
⇒ Consider a satisfying assignment a for C
 - Find values of all gates in C under a
 - Give value of gate v to variable x_v; call this assignment a'
 - a' satisfies φ_C (exercise)
⇐ Consider a satisfying assignment a for φ_C
 - Let a' be the restriction of a to only the input variables
 - Value of gate v under a' is the same as value of x_v in a
 - Thus, a' satisfies C

Theorem

SAT is NP-Complete.
Proving that a problem X is **NP-Complete**

To prove X is **NP-Complete**, show

- Show X is in **NP**.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

- Reduction from a known **NP-Complete** problem such as **CSAT** or **SAT** to X

$\text{SAT} \leq_p X$ implies that every **NP** problem $Y \leq_p X$. Why?

Transitivity of reductions:

$$Y \leq_p \text{SAT} \text{ and } \text{SAT} \leq_p X \text{ and hence } Y \leq_p X.$$

NP-Completeness via Reductions

- **CSAT** is **NP-Complete**.
- **CSAT** $\leq_p \text{SAT}$ and **SAT** is in **NP** and hence **SAT** is **NP-Complete**.
- **SAT** $\leq_p 3$-SAT and hence 3-SAT is **NP-Complete**.
- 3-SAT \leq_p Independent Set (which is in **NP**) and hence Independent Set is **NP-Complete**.
- **Vertex Cover** is **NP-Complete**.
- **Clique** is **NP-Complete**.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!