Part I

Algorithm(s) for Maximum Flow
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy Approach: Issues

Issues = What is this nonsense?

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Residual Graph

The “leftover” graph

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is:

- $V' = V$
- **Forward Edges**: For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$
- **Backward Edges**: For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add $(v, u) \in E'$ with capacity $f(e)$

Residual Graph Example

![Residual Graph Example](image)

Figure: Flow on edges is indicated in red

Figure: Residual Graph
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

\[\text{Let } f \text{ be a flow in } G \text{ and } G_f \text{ be the residual graph. If } f' \text{ is a flow in } G_f \text{ then } f + f' \text{ is a flow in } G \text{ of value } v(f) + v(f'). \]

Lemma

\[\text{Let } f \text{ and } f' \text{ be two flows in } G \text{ with } v(f') \geq v(f). \text{ Then there is a flow } f'' \text{ of value } v(f') - v(f) \text{ in } G_f. \]

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

\[\text{MaxFlow}(G, s, t): \]

- If the flow from \(s \) to \(t \) is 0 return 0
- Find any flow \(f \) with \(v(f) > 0 \) in \(G \)
- Recursively compute a maximum flow \(f' \) in \(G_f \)
- Output the flow \(f + f' \)

Iterative algorithm for finding a maximum flow:

\[\text{MaxFlow}(G, s, t): \]

- Start with flow \(f \) that is 0 on all edges
- While there is a flow \(f' \) in \(G_f \) with \(v(f') > 0 \) do
 - \(f = f + f' \)
 - Update \(G_f \)
- endWhile
- Output \(f \)
Ford-Fulkerson Algorithm

```plaintext
algFordFulkerson
   for every edge e, \( f(e) = 0 \)
   \( G_f \) is residual graph of \( G \) with respect to \( f \)
   while \( G_f \) has a simple \( s-t \) path do
      let \( P \) be simple \( s-t \) path in \( G_f \)
      \( f = \text{augment}(f, P) \)
      Construct new residual graph \( G_f \)
```

```plaintext
augment(f, P)
   let \( b \) be bottleneck capacity, i.e., min capacity of edges in \( P \) (in \( G_f \))
   for each edge \((u, v)\) in \( P \) do
      if \( e = (u, v) \) is a forward edge then
         \( f(e) = f(e) + b \)
      else (* \((u, v)\) is a backward edge *)
         let \( e = (v, u) \) (* \((v, u)\) is in \( G \) *)
         \( f(e) = f(e) - b \)
   return \( f \)
```

Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple \(s-t \) path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.

- **Capacity constraint:** If \((u, v)\) \(\in P \) is a forward edge then \(f'(e) = f(e) + b \) and \(b \leq c(e) - f(e) \). If \((u, v)\) \(\in P \) is a backward edge, then letting \(e = (v, u) \), \(f'(e) = f(e) - b \) and \(b \leq f(e) \). Both cases \(0 \leq f'(e) \leq c(e) \).

- **Conservation constraint:** Let \(v \) be an internal node. Let \(e_1, e_2 \) be edges of \(P \) incident to \(v \). Four cases based on whether \(e_1, e_2 \) are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Conservation Constraint

Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

Properties about Augmentation: Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values $f(e)$ and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in $(j+1)$st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.
Proposition

Let \(f \) be a flow and \(f' \) be flow after one augmentation. Then \(\nu(f) < \nu(f') \).

Proof.

Let \(P \) be an augmenting path, i.e., \(P \) is a simple \(s \)-\(t \) path in residual graph

- First edge \(e \) in \(P \) must leave \(s \)
- Original network \(G \) has no incoming edges to \(s \); hence \(e \) is a forward edge
- \(P \) is simple and so never returns to \(s \)
- Thus, value of flow increases by the flow on edge \(e \)

Termination Proof

Theorem

Let \(C \) be the minimum cut value; in particular

\[
C \leq \sum_{e \text{ out of } s} c(e).
\]

Ford-Fulkerson algorithm terminates after finding at most \(C \) augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most \(C \).

Running time

- Number of iterations \(\leq C \)
- Number of edges in \(G_f \) \(\leq 2m \)
- Time to find augmenting path is \(O(n + m) \)
- Running time is \(O(C(n + m)) \) (or \(O(mC) \)).
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

![Graph](image)

Ford-Fulkerson can take $\Omega(C)$ iterations.

Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum $s-t$ flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!
Recalling Cuts

Definition

Given a flow network an \(s-t\) cut is a set of edges \(E' \subseteq E\) such that removing \(E'\) disconnects \(s\) from \(t\): in other words there is no directed \(s \rightarrow t\) path in \(E - E'\). Capacity of cut \(E'\) is \(\sum_{e \in E'} c(e)\).

Let \(A \subseteq V\) such that
- \(s \in A\), \(t \not\in A\)
- \(B = V - A\) and hence \(t \in B\)
Define \((A, B) = \{(u, v) \in E \mid u \in A, v \in B\}\)

Claim

\((A, B)\) is an \(s-t\) cut.

Recall: Every minimal \(s-t\) cut \(E'\) is a cut of the form \((A, B)\).

Ford-Fulkerson Correctness

Lemma

If there is no \(s-t\) path in \(G_f\) then there is some cut \((A, B)\) such that \(v(f) = c(A, B)\)

Proof.

Let \(A\) be all vertices reachable from \(s\) in \(G_f\), \(B = V \setminus A\)
- \(s \in A\) and \(t \in B\). So \((A, B)\) is an \(s-t\) cut in \(G\)
- If \(e = (u, v) \in G\) with \(u \in A\) and \(v \in B\), then \(f(e) = c(e)\) (saturated edge) because otherwise \(v\) is reachable from \(s\) in \(G_f\)
Lemma Proof Continued

Proof.

- If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then $f(e) = 0$ because otherwise u' is reachable from s in G_f.
- Thus,

$$v(f) = f^\text{out}(A) - f^\text{in}(A)$$
$$= f^\text{out}(A) - 0$$
$$= c(A, B) - 0$$
$$= c(A, B)$$

Example

Flow f

Residual graph G_f: no s-t path

A is reachable set from s in G_f
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A^*, B^*)
- Hence, f^* is maximum

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.
Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

Efficiency of Ford-Fulkerson

Running time $= \mathcal{O}(mC)$ is not polynomial. Can the upper bound be achieved?
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson

- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: $O(m \log C)$

- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm’s running time is $O(m \log m)$.
- Different algorithm that also leads to $O(m \log m)$ time algorithm by adapting Prim’s algorithm.

Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2 n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).
- Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.
Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. **Note:** The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?