Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Fall 2011
October 25, 2011

16.0.0.1 Everything flows

Panta rei – everything flows (literally).
Heraclitus (535–475 BC)

16.1 Network Flows: Introduction and Setup

16.1.0.2 Transportation/Road Network

16.1.0.3 Internet Backbone Network

16.1.0.4 Common Features of Flow Networks

(A) Network represented by a (directed) graph \(G = (V, E)\)
(B) Each edge \(e\) has a capacity \(c(e) \geq 0\) that limits amount of traffic on \(e\)
(C) Source(s) of traffic/data
(D) Sink(s) of traffic/data
(E) Traffic flows from sources to sinks
(F) Traffic is switched/interchanged at nodes

Flow: abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source Single Sink Flows

Simple setting:

(A) single source s and single sink t

(B) every other node v is an *internal* node

(C) flow originates at s and terminates at t

(A) Each edge e has a capacity $c(e) \geq 0$

(B) Some times it is convenient to assume that source $s \in V$ has no incoming edges and sink $t \in V$ has no outgoing edges

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

16.1.0.6 Definition of Flow

Two ways to define flows:

(A) edge based

(B) path based

They are essentially equivalent but have different uses.

Edge based definition is more compact.
16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1 A flow in a network $G = (V, E)$, is a function $f : E \rightarrow \mathbb{R}^{\geq 0}$ such that

(A) Capacity Constraint: For each edge e, $f(e) \leq c(e)$

(B) Conservation Constraint: For each vertex $v \neq s, t$

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

(C) Value of flow: (total flow out of source) − (total flow in to source)

16.1.0.8 Flow...

Conservation of flow law is also known as *Kirchhoff’s law*.
16.1.0.9 More Definitions and Notation

Notation
(A) The inflow into a vertex \(v \) is \(f_{in}(v) = \sum_{e \text{ into } v} f(e) \) and the outflow is \(f_{out}(v) = \sum_{e \text{ out of } v} f(e) \).
(B) For a set of vertices \(A \), \(f_{in}(A) = \sum_{e \text{ into } A} f(e) \). Outflow \(f_{out}(A) \) is defined analogously.

Definition 16.1.2 For a network \(G = (V, E) \) with source \(s \), the value of flow \(f \) is defined as \(v(f) = f_{out}(s) - f_{in}(s) \).

16.1.0.10 A Path Based Definition of Flow

Intuition: flow goes from source \(s \) to sink \(t \) along a path.
\(P \): set of all paths from \(s \) to \(t \). \(|P| \) can be exponential in \(n \).

Definition 16.1.3 A flow in a network \(G = (V, E) \), is a function \(f : P \rightarrow \mathbb{R}^{\geq 0} \) such that

(A) Capacity Constraint: For each edge \(e \), total flow on \(e \) is \(\leq c(e) \).

\[\sum_{p \in P, e \in p} f(p) \leq c(e) \]

(B) Conservation Constraint: No need! Automatic.

Value of flow: \(\sum_{p \in P} f(p) \)

16.1.0.11 Example

\[\begin{align*}
 &s \quad /30
 \downarrow
 &v \quad /20
 \downarrow
 &u \quad /27
 \downarrow
 &t \quad /20
 \end{align*} \]

\(P = \{p_1, p_2, p_3\} \)

- \(p_1 : s \rightarrow u \rightarrow t \)
- \(p_2 : s \rightarrow u \rightarrow v \rightarrow t \)
- \(p_3 : s \rightarrow v \rightarrow t \)

\(f(p_1) = 10, f(p_2) = 4, f(p_3) = 6 \)
16.1.0.12 Path based flow implies Edge based flow

Lemma 16.1.4 Given a path based flow \(f : \mathcal{P} \rightarrow \mathbb{R}^{\geq 0} \) there is an edge based flow \(f' : E \rightarrow \mathbb{R}^{\geq 0} \) of the same value.

Proof: For each edge \(e \) define \(f'(e) = \sum_{p \in \mathcal{P}} f(p) \).

Exercise: verify capacity and conservation constraints for \(f' \).

Exercise: verify that value of \(f \) and \(f' \) are equal.

16.1.0.13 Example

\[\mathcal{P} = \{ p_1, p_2, p_3 \} \]

\(p_1 : s \rightarrow u \rightarrow t \)
\(p_2 : s \rightarrow u \rightarrow v \rightarrow t \)
\(p_3 : s \rightarrow v \rightarrow t \)

\(f(p_1) = 10, f(p_2) = 4, f(p_3) = 6 \)

\(f'((s,u)) = 14 \)
\(f'((u,v)) = 4 \)
\(f'((s,v)) = 6 \)
\(f'((u,t)) = 10 \)
\(f'((v,t)) = 10 \)

16.1.1 Flow Decomposition

16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5 Given an edge based flow \(f' : E \rightarrow \mathbb{R}^{\geq 0} \), there is a path based flow \(f : \mathcal{P} \rightarrow \mathbb{R}^{\geq 0} \) of same value. Moreover, \(f \) assigns non-negative flow to at most \(m \) paths where \(|E| = m \) and \(|V| = n \). Given \(f' \), the path based flow can be computed in \(O(mn) \) time.
16.1.2 Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof:[Proof Idea]
(A) remove all edges with $f'(e) = 0$
(B) find a path p from s to t
(C) assign $f(p)$ to be $\min_{e \in p} f'(e)$
(D) reduce $f'(e)$ for all $e \in p$ by $f(p)$
(E) repeat until no path from s to t
(F) in each iteration at least one edge has flow reduced to zero; hence at most m iterations.
Can be implemented in $O(m(m + n))$ time. $O(mn)$ time requires care.

16.1.2.2 Example

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:
(A) compact representation, only m values to be specified
(B) need to check flow conservation explicitly at each internal node
Path flows:
(A) in some applications, paths more natural,
(B) not compact,
(C) no need to check flow conservation constraints.
Equivalence shows that we can go back and forth easily.

16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t

Goal Find flow of maximum value
Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut) Given a flow network an **s-t cut** is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in $E - E'$.

The **capacity** of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

![Graph with nodes and edges labeled](image)

Caution:

(A) Cut may leave $t \to s$ paths!
(B) There might be many s-t cuts.

16.1.3 s – t cuts

16.1.3.1 A death by a thousand cuts

![Graph with nodes and edges labeled](image)

16.1.3.2 Minimal Cut

Definition 16.1.7 Given a flow network an s-t, E' is a **minimal cut** if for all $e \in E'$, $E' - \{e\}$ is not a cut.

Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?
16.1.3.3 Cuts as Vertex Partitions

Let $A \subset V$ such that ‘

(A) $s \in A, t \notin A$

(B) $B = V - A$ and hence $t \in B$

Define $\text{cut} \ (A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$ The set of edges leaving A.

Claim 16.1.8 (A, B) is an s-t cut.

Proof: Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

16.1.3.4 Cuts as Vertex Partitions

Lemma 16.1.9 Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof: E' is an s-t cut implies no path from s to t in $(V, E - E')$.

(A) Let A be set of all nodes reachable by s in $(V, E - E')$.

(B) Since E' is a cut, $t \notin A$.

(C) $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary 16.1.10 Every minimal s-t cut E' is a cut of the form (A, B).

16.1.3.5 Minimum Cut

Definition 16.1.11 Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no “easy” algorithm to find a minimum cut.
16.1.3.6 The Minimum-Cut Problem

Problem

Input A flow network \(G \)

Goal Find the capacity of a minimum \(s \)-t cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12 For any \(s \)-t cut \(E' \), maximum \(s \)-t flow \(\leq \) capacity of \(E' \).

Proof: Formal proof easier with path based definition of flow.

Suppose \(f : \mathcal{P} \to \mathbb{R}_{\geq 0} \) is a max-flow. Every path \(p \in \mathcal{P} \) contains an edge \(e \in E' \). Why?

Assign each path \(p \in \mathcal{P} \) to exactly one edge \(e \in E' \). Why?

Let \(\mathcal{P}_e \) be paths assigned to \(e \in E' \). Then

\[
v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e)
\]

\[\square\]

16.1.3.8 Flows and Cuts

Lemma 16.1.13 For any \(s \)-t cut \(E' \), maximum \(s \)-t flow \(\leq \) capacity of \(E' \).

Corollary 16.1.14 Maximum \(s \)-t flow \(\leq \) minimum \(s \)-t cut.

16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15 In any flow network the maximum \(s \)-t flow is equal to the minimum \(s \)-t cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly.

Many applications:

(A) optimization
(B) graph theory
(C) combinatorics

9
16.1.3.10 The Maximum-Flow Problem

Problem

Input A network \(G \) with capacity \(c \) and source \(s \) and sink \(t \)

Goal Find flow of maximum value from \(s \) to \(t \)

Exercise: Given \(G, s, t \) as above, show that one can remove all edges into \(s \) and all edges out of \(t \) without affecting the flow value between \(s \) and \(t \).