Part I

Slick analysis of QuickSort
A Slick Analysis of QuickSort

Let \(Q(A) \) be number of comparisons done on input array \(A \):
- For \(1 \leq i < j < n \) let \(R_{ij} \) be the event that rank \(i \) element is compared with rank \(j \) element.
- \(X_{ij} \) is the indicator random variable for \(R_{ij} \). That is, \(X_{ij} = 1 \) if rank \(i \) is compared with rank \(j \) element, otherwise \(0 \).

\[
Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}
\]

and hence by linearity of expectation,

\[
E\left[Q(A) \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].
\]

Question: What is \(\Pr[R_{ij}] \)?

With ranks:

As such, probability of comparing 5 to 8 is \(\Pr[R_{4,7}] \).

- If pivot too small (say 3 [rank 2]): Partition and call recursively:

 Decision if to compare 5 to 8 is moved to subproblem.

- If pivot too large (say 9 [rank 8]):

 Decision if to compare 5 to 8 moved to subproblem.
As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

- If pivot is 5 (rank 4). Bingo!

- If pivot is 8 (rank 7). Bingo!

- If pivot in between the two numbers (say 6 [rank 5]):

 5 and 8 will never be compared to each other.

Conclusion:

$R_{i,j}$ happens if and only if:

- ith or jth ranked element is the first pivot out of ith to jth ranked elements

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in $[0, 1]$).
- Choose pivot to be the element with lowest priority in subproblem.
- Equivalent to picking pivot uniformly at random (as QuickSort do).
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

How to analyze this?

Thinking acrobatics!

- Assign every element in the array a random priority (say in $[0, 1]$).
- Choose pivot to be the element with lowest priority in subproblem.

$\implies R_{i,j}$ happens if either i or j have lowest priority out of elements rank i to j.

As such

$$\Pr[R_{i,j}] = \frac{2}{j - i + 1}.$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{(j-i+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...
Lemma

\[\Pr[R_{ij}] = \frac{2}{(j-i+1)}. \]

Proof.

Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \). Let
\(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

Observation: \(a_i \) is compared with \(a_j \) if and only if either \(a_i \) or \(a_j \) is
chosen as a pivot from \(S \) at separation.

Observation: Given that pivot is chosen from \(S \) the probability that
it is \(a_i \) or \(a_j \) is exactly
\(\frac{2}{|S|} = \frac{2}{(j-i+1)} \) since the pivot is
chosen uniformly at random from the array.

Lemma

\[\Pr[R_{ij}] = \frac{2}{(j-i+1)}. \]

\[
E\left[Q(A) \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].
\]
Consider element e in the array.
Consider the subproblems it participates in during QuickSort execution: S_1, S_2, \ldots, S_k.

Definition

e is lucky in the jth iteration if $|S_j| \leq (3/4) |S_{j-1}|$.

Key observation

The event e is lucky in jth iteration is independent of the event that e is lucky in kth iteration, (If $j \neq k$)

$X_j = 1$ iff e is lucky in the jth iteration.

Observation

$\Pr[X_j = 1] = 1/2$.

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then e subproblem is of size one. Done!
Yet another analysis of QuickSort

Continued...

Observation

Probability e participates in $\geq k = 40 \lceil \log_{4/3} n \rceil$ subproblems. Is equal to

$$\Pr[X_1 + X_2 + \ldots + X_k \leq \lceil \log_{4/3} n \rceil]$$

$$\leq \Pr[X_1 + X_2 + \ldots + X_k \leq k/4]$$

$$\leq 2 \cdot 0.68^{k/4} \leq 1/n^5.$$

Conclusion

QuickSort takes $O(n \log n)$ time with high probability.

Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection

- Pick a pivot element *uniformly at random* from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Return pivot if rank of pivot is j
- Otherwise recurse on one of the arrays depending on j and their sizes.
Algorithm for Randomized Selection

Assume for simplicity that \(A \) has distinct elements.

QuickSelect \((A, j)\):
- Pick pivot \(x \) uniformly at random from \(A \)
- Partition \(A \) into \(A_{\text{less}}, x \), and \(A_{\text{greater}} \) using \(x \) as pivot
 - if \(|A_{\text{less}}| = j - 1\) then
 - return \(x \)
 - if \(|A_{\text{less}}| \geq j\) then
 - return \(\text{QuickSelect}(A_{\text{less}}, j) \)
 - else
 - return \(\text{QuickSelect}(A_{\text{greater}}, j - |A_{\text{less}}| - 1) \)

QuickSelect analysis

- \(S_1, S_2, \ldots, S_k \) be the subproblems considered by the algorithm. Here \(|S_1| = n\).
- \(S_i \) would be **successful** if \(|S_i| \leq (3/4) |S_{i-1}|\)
- \(Y_1 \) = number of recursive calls till first successful iteration. Clearly, total work till this happens is \(O(Y_1 n) \).
- \(n_i \) = size of the subproblem immediately after the \((i - 1)\)th successful iteration.
- \(Y_i \) = number of recursive calls after the \((i - 1)\)th successful call, till the \(i\)th successful iteration.
- Running time is \(O(\sum_i n_i Y_i) \).
QuickSelect analysis

Example

$S_i =$ subarray used in ith recursive call
$|S_i| =$ size of this subarray
Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1 = 2$</td>
<td>$Y_2 = 4$</td>
<td>$Y_3 = 2$</td>
<td>$Y_4 = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td>$n_1 = 100$</td>
<td>$n_2 = 60$</td>
<td>$n_3 = 25$</td>
<td>$n_4 = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- All the subproblems after $(i - 1)$th successful iteration till ith successful iteration have size $\leq n_i$.
- Total work: $O(\sum_i n_i Y_i)$.

QuickSelect analysis

Total work: $O(\sum_i n_i Y_i)$.

We have:
- $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$.
- Y_i is a random variable with geometric distribution
 Probability of $Y_i = k$ is $1/2^i$.
- $E[Y_i] = 2$.

As such, expected work is proportional to

$$E \left[\sum_i n_i Y_i \right] = \sum_i E[n_i Y_i] \leq \sum_i E[(3/4)^{i-1}n Y_i]$$

$$= n \sum_i (3/4)^{i-1} E[Y_i] = n \sum_{i=1} E[Y_i] 2 \leq 8n.$$
QuickSelect analysis

Theorem
The expected running time of QuickSelect is $O(n)$.

QuickSelect analysis
Analysis via Recurrence

Given array A of size n let $Q(A)$ be number of comparisons of randomized selection on A for selecting rank j element.

Note that $Q(A)$ is a random variable

Let A_{less}^i and A_{greater}^i be the left and right arrays obtained if pivot is rank i element of A.

Algorithm recurses on A_{less}^i if $j < i$ and recurses on A_{greater}^i if $j > i$ and terminates if $j = i$.

$$Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A_{\text{greater}}^i)$$
$$+ \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A_{\text{less}}^i)$$
Analyzing the Recurrence

As in **QuickSort** we obtain the following recurrence where $T(n)$ is the worst-case expected time.

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n - i) + \sum_{i=j}^{n} T(i - 1) \right).$$

Theorem

$T(n) = O(n)$.

Proof.

(Guess and) Verify by induction (see next slide).

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.

Base case: $n = 1$, we have $T(1) = 0$ since no comparisons needed and hence $T(1) \leq \alpha$.

Induction step: Assume $T(k) \leq \alpha k$ for $1 \leq k < n$ and prove it for $T(n)$. We have by the recurrence:

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n - i) + \sum_{i=j}^{n} T(i - 1) \right)$$

$$\leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n - i) + \sum_{i=j}^{n} (i - 1) \right) \quad \text{by applying induction}$$
Analyzing the recurrence

\[T(n) \leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n - i) + \sum_{i=j}^{n} (i - 1) \right) \]

\[\leq n + \frac{\alpha}{n} \left((j - 1)(2n - j)/2 + (n - j + 1)(n + j - 2)/2 \right) \]

\[\leq n + \frac{\alpha}{2n} \left(n^2 + 2nj - 2j^2 - 3n + 4j - 2 \right) \]

above expression maximized when \(j = (n + 1)/2 \): calculus

\[\leq n + \frac{\alpha}{2n} \left(3n^2/2 - n \right) \] substituting \((n + 1)/2 \) for \(j \)

\[\leq n + 3\alpha n/4 \]

\[\leq \alpha n \] for any constant \(\alpha \geq 4 \)

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug \(j = n/2 \) to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don’t understand things. You just get used to them.
If there is time...

Sketch Treaps and how QuickSort implies $O(\log n)$ time per operation (with high probability).