Binary Search, Introduction to Dynamic Programming

Lecture 7
February 8, 2011
Part I

Exponentiation, Binary Search
Exponentiation

Input Two numbers: a and integer $n \geq 0$

Goal Compute a^n

Obvious algorithm:

```
SlowPow(a,n):
    x = 1;
    for i = 1 to n do
        x = x*a
    Output x
```

$O(n)$ multiplications.
Exponentiation

Input Two numbers: a and integer $n \geq 0$

Goal Compute a^n

Obvious algorithm:

$$\textbf{SlowPow}(a,n):$$

$x = 1;$

for $i = 1$ to n do

$x = x*a$

Output x

$O(n)$ multiplications.
Fast Exponentiation

Observation: \(a^n = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor - \lfloor n/2 \rfloor} \).

FastPow(*a*, *n*):

if (*n* = 0) return 1

\[x = \text{FastPow}(a, \lfloor n/2 \rfloor) \]

\[x = x \times x \]

if (*n* is odd) then

\[x = x \times a \]

return \(x \)

\(T(n) \): number of multiplications for *n*

\[T(n) \leq T(\lfloor n/2 \rfloor) + 2 \]

\(T(n) = \Theta(\log n) \).
Fast Exponentiation

Observation: \(a^n = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor - \lfloor n/2 \rfloor} \).

FastPow \((a, n)\):

```java
if (n == 0) return 1
x = FastPow(a, \lfloor n/2 \rfloor)
x = x*x
if (n is odd) then
    x = x * a
return x
```

\(T(n) \): number of multiplications for \(n \)

\[T(n) \leq T(\lfloor n/2 \rfloor) + 2 \]

\(T(n) = \Theta(\log n) \).
Fast Exponentiation

Observation: $a^n = a^{n/2} a^{n/2} = a^{n/2} a^{n/2} a^{n/2} - 2^{n/2}$.

FastPow(a, n):

\[
\text{if } (n = 0) \text{ return } 1 \\
x = \text{FastPow}(a, \lfloor n/2 \rfloor) \\
x = x \times x \\
\text{if } (n \text{ is odd}) \text{ then} \\
\quad x = x \times a \\
\text{return } x
\]

$T(n)$: number of multiplications for n

\[T(n) \leq T(\lfloor n/2 \rfloor) + 2\]

$T(n) = \Theta(\log n)$.
Fast Exponentiation

Observation: \(a^n = a^{\lfloor n/2 \rfloor} a^{\lceil n/2 \rceil} = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor - \lfloor n/2 \rfloor} \).

FastPow(a, n):
- if \(n = 0 \) return 1
- \(x = \text{FastPow}(a, \lfloor n/2 \rfloor) \)
- \(x = x \times x \)
- if \(n \) is odd then
 - \(x = x \times a \)
- return \(x \)

T(n): number of multiplications for \(n \)

\[
T(n) \leq T(\lfloor n/2 \rfloor) + 2
\]

\[
T(n) = \Theta(\log n).
\]
Observation: \(a^n = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} a^{n-\lfloor n/2 \rfloor} \).

FastPow \((a, n)\):

if \((n = 0)\) return 1

\(x = \text{FastPow}(a, \lfloor n/2 \rfloor)\)

\(x = x \times x\)

if \((n \text{ is odd})\) then

\(x = x \times a\)

return \(x\)

\(T(n)\): number of multiplications for \(n\)

\[T(n) \leq T(\lfloor n/2 \rfloor) + 2 \]

\(T(n) = \Theta(\log n)\).
Question: Is $\text{SlowPow}()$ a polynomial time algorithm? FastPow?

Input size: $\log a + \log n$

Output size: $n \log a$. Not necessarily polynomial in input size!

Both SlowPow and FastPow are polynomial in output size.
Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?

Input size: \(\log a + \log n \)

Output size: \(n \log a \). Not necessarily polynomial in input size!

Both SlowPow and FastPow are polynomial in output size.
Question: Is \texttt{SlowPow()} a polynomial time algorithm? \texttt{FastPow}?

Input size: \(\log a + \log n \)

Output size: \(n \log a \). Not necessarily polynomial in input size!

Both \texttt{SlowPow} and \texttt{FastPow} are polynomial in output size.
Complexity of Exponentiation

Question: Is \textbf{SlowPow}() a polynomial time algorithm? \textbf{FastPow}?
Input size: \(\log a + \log n \)
Output size: \(n \log a \). Not necessarily polynomial in input size!
Both \textbf{SlowPow} and \textbf{FastPow} are polynomial in output size.
Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: \(a, n \geq 0, p \geq 2 \) (typically a prime)

Goal Compute \(a^n \mod p \)

Input size: \(\Theta(\log a + \log n + \log p) \)

Output size: \(O(\log p) \) and hence polynomial in input size.

Observation: \(xy \mod p = ((x \mod p)(y \mod p)) \mod p \)
Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: $a, n \geq 0, p \geq 2$ (typically a prime)
Goal Compute $a^n \mod p$

Input size: $\Theta(\log a + \log n + \log p)$
Output size: $O(\log p)$ and hence polynomial in input size.

Observation: $xy \mod p = ((x \mod p)(y \mod p)) \mod p$
Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: \(a, n \geq 0, p \geq 2 \) (typically a prime)

Goal Compute \(a^n \mod p \)

Input size: \(\Theta(\log a + \log n + \log p) \)
Output size: \(O(\log p) \) and hence polynomial in input size.

Observation: \(xy \mod p = ((x \mod p)(y \mod p)) \mod p \)
Exponentiation modulo a given number

Input Three integers: $a, n \geq 0, p \geq 2$ (typically a prime)
Goal Compute $a^n \mod p$

FastPowMod(a, n, p):

if $(n = 0)$ return 1

$x = \text{FastPowMod}(a, \lfloor n/2 \rfloor, p)$

$x = x \times x \mod p$

if $(n$ is odd)

$x = x \times a \mod p$

return x

FastPowMod is a polynomial time algorithm. **SlowPowMod** is not (why?).
Exponentiation modulo a given number

Input Three integers: $a, n \geq 0, p \geq 2$ (typically a prime)

Goal Compute $a^n \mod p$

FastPowMod(a, n, p):

- if ($n = 0$) return 1
- $x = \text{FastPowMod}(a, \lfloor n/2 \rfloor, p)$
- $x = x \times x \mod p$
- if (n is odd)
 - $x = x \times a \mod p$
- return x

FastPowMod is a polynomial time algorithm. SlowPowMod is not (why?).
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

BinarySearch($A[a..b]$, x):
 if ($b - a <= 0$) return NO
 $mid = A[(a + b)/2]$
 if ($x = mid$) return YES
 if ($x < mid$)
 return BinarySearch($A[a..[(a + b)/2] - 1]$, x)
 else
 return BinarySearch($A[[a + b]/2 + 1..b]$, x)

Analysis: $T(n) = T(\lfloor n/2 \rfloor) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

BinarySearch($A[a..b], x$):

if ($b - a <= 0$) return NO

$mid = A\lceil(a + b)/2\rceil$

if ($x = mid$) return YES

if ($x < mid$)

return **BinarySearch**($A[a..\lfloor(a + b)/2\rfloor - 1], x$)

else

return **BinarySearch**($A\lceil(a + b)/2\rceil + 1..b], x$)

Analysis: $T(n) = T(\lfloor n/2 \rfloor) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

BinarySearch$(A[a..b], x)$:

- if $(b - a \leq 0)$ return NO
- $mid = A[\lfloor (a + b)/2 \rfloor]$
- if $(x = mid)$ return YES
- if $(x < mid)$
 - return **BinarySearch**$(A[a..\lfloor (a + b)/2 \rfloor - 1], x)$
- else
 - return **BinarySearch**$(A[\lceil (a + b)/2 \rceil + 1..b], x)$

Analysis: $T(n) = T(\lfloor n/2 \rfloor) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$
Another common use of binary search

- **Optimization version:** find solution of best (say minimum) value
- **Decision version:** is there a solution of value at most a given value \(v \)?

Reduce optimization to decision (may be easier to think about):
- Given instance \(I \) compute upper bound \(U(I) \) on best value
- Compute lower bound \(L(I) \) on best value
- Do binary search on interval \([L(I), U(I)]\) using decision version as black box
- \(O(\log(U(I) - L(I)) \) calls to decision version if \(U(I), L(I) \) are integers
Another common use of binary search

- **Optimization version**: find solution of best (say minimum) value
- **Decision version**: is there a solution of value at most a given value \(v\)?

Reduce optimization to decision (may be easier to think about):
- Given instance \(I\) compute upper bound \(U(I)\) on best value
- Compute lower bound \(L(I)\) on best value
- Do binary search on interval \([L(I), U(I)]\) using decision version as black box
- \(O(\log(U(I) - L(I)))\) calls to decision version if \(U(I), L(I)\) are integers
Problem: shortest paths in a graph.

Decision version: given G with non-negative integer edge lengths, nodes s, t and bound B, is there an s-t path in G of length at most B?

Optimization version: find the length of a shortest path between s and t in G.

Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?
Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?

- Let U be maximum edge length in G.
- Minimum edge length is L.
- s-t shortest path length is at most $(n - 1)U$ and at least L.
- Apply binary search on the interval $[L, (n - 1)U]$ via the algorithm for the decision problem.
- $O(\log((n - 1)U - L))$ calls to the decision problem algorithm sufficient. Polynomial in input size.
Part II

Introduction to Dynamic Programming
Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction
- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size n is reduced to one or more instances of size $n - 1$ or less.
- For termination, problem instances of small size are solved by some other method as base cases.
Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction
- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size n is reduced to one or more instances of size $n - 1$ or less.
- For termination, problem instances of small size are solved by some other method as base cases.
Recursion in Algorithm Design

- **Tail Recursion**: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.

- **Divide and Conquer**: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem.

- **Dynamic Programming**: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \text{ and } F(0) = 0, F(1) = 1. \]

These numbers have many interesting and amazing properties. A journal *The Fibonacci Quarterly*!

- \[F(n) = (\phi^n - (1 - \phi)^n)/\sqrt{5} \text{ where } \phi \text{ is the golden ratio} \]
 \[(1 + \sqrt{5})/2 \approx 1.618. \]
- \[\lim_{n \to \infty} F(n + 1)/F(n) = \phi \]

Question: Given \(n \), compute \(F(n) \).
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \] and \(F(0) = 0, F(1) = 1 \).

These numbers have many interesting and amazing properties. A journal *The Fibonacci Quarterly*!

- \(F(n) = (\phi^n - (1 - \phi)^n)/\sqrt{5} \) where \(\phi \) is the golden ratio \((1 + \sqrt{5})/2 \approx 1.618 \).
- \(\lim_{n \to \infty} F(n + 1)/F(n) = \phi \)

Question: Given \(n \), compute \(F(n) \).
Recursive Algorithm for Fibonacci Numbers

\[
\text{Fib}(n) : \\
\begin{align*}
\text{if} \ (n = 0) & \quad \text{return} \ 0 \\
\text{else if} \ (n = 1) & \quad \text{return} \ 1 \\
\text{else} & \\
\quad \text{return} \ \text{Fib}(n - 1) + \ \text{Fib}(n - 2)
\end{align*}
\]

Running time? Let \(T(n) \) be the number of additions in Fib(n).

\[
T(n) = T(n - 1) + T(n - 2) + 1 \quad \text{and} \quad T(0) = T(1) = 0
\]

Roughly same as \(F(n) \)

\[
T(n) = \Theta(\phi^n)
\]

The number of additions is exponential in \(n \). Can we do better?
Recursive Algorithm for Fibonacci Numbers

\[\text{Fib}(n) : \]
\[
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{else if } (n = 1) & \quad \text{return } 1 \\
\text{else} & \quad \text{return Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

Running time? Let \(T(n) \) be the number of additions in Fib(n).

\[
T(n) = T(n - 1) + T(n - 2) + 1 \quad \text{and} \quad T(0) = T(1) = 0
\]

Roughly same as \(F(n) \)

\[
T(n) = \Theta(\phi^n)
\]

The number of additions is exponential in \(n \). Can we do better?
Recursive Algorithm for Fibonacci Numbers

\textbf{Fib}(n):
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{else if } (n = 1) & \quad \text{return } 1 \\
\text{else} & \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}

Running time? Let \(T(n) \) be the number of additions in \text{Fib}(n).

\[T(n) = T(n - 1) + T(n - 2) + 1 \text{ and } T(0) = T(1) = 0 \]

Roughly same as \(F(n) \)

\[T(n) = \Theta(\phi^n) \]

The number of additions is exponential in \(n \). Can we do better?
Recursive Algorithm for Fibonacci Numbers

\[\text{Fib}(n) : \]
 \[\text{if } (n = 0) \]
 \[\text{return } 0 \]
 \[\text{else if } (n = 1) \]
 \[\text{return } 1 \]
 \[\text{else} \]
 \[\text{return Fib}(n - 1) + \text{Fib}(n - 2) \]

Running time? Let \(T(n) \) be the number of additions in Fib(n).

\[T(n) = T(n - 1) + T(n - 2) + 1 \text{ and } T(0) = T(1) = 0 \]

Roughly same as \(F(n) \)

\[T(n) = \Theta(\phi^n) \]

The number of additions is exponential in \(n \). Can we do better?
An iterative algorithm for Fibonacci numbers

\textbf{FibIter}(n):
\begin{itemize}
 \item \textbf{if} \ (n = 0) \ \textbf{then}
 \begin{itemize}
 \item return 0
 \end{itemize}
 \item \textbf{else if} \ (n = 1) \ \textbf{then}
 \begin{itemize}
 \item return 1
 \end{itemize}
 \item \textbf{else}
 \begin{itemize}
 \item \(F[0] = 0\)
 \item \(F[1] = 1\)
 \item \textbf{for} \ i = 2 \ \textbf{to} \ n \ \textbf{do}
 \begin{itemize}
 \item \(F[i] \leftarrow F[i - 1] + F[i - 2]\)
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}
\textbf{return} \(F[n]\)

What is the running time of the algorithm? \(O(n)\) additions.
An iterative algorithm for Fibonacci numbers

\textbf{FibIter}(n):

\begin{itemize}
 \item if \((n = 0)\) then
 \begin{itemize}
 \item return 0
 \end{itemize}
 \item else if \((n = 1)\) then
 \begin{itemize}
 \item return 1
 \end{itemize}
 \item else
 \begin{itemize}
 \item \(F[0] = 0\)
 \item \(F[1] = 1\)
 \item for \(i = 2\) to \(n\) do
 \begin{itemize}
 \item \(F[i] \leftarrow F[i - 1] + F[i - 2]\)
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}

return \(F[n]\)

What is the running time of the algorithm? \(O(n)\) additions.
An iterative algorithm for Fibonacci numbers

\(\text{FibIter}(n): \)

\[
\begin{align*}
\text{if } (n = 0) & \text{ then} \\
& \text{return 0} \\
\text{else if } (n = 1) & \text{ then} \\
& \text{return 1} \\
\text{else} & \\
F[0] & = 0 \\
F[1] & = 1 \\
\text{for } i = 2 \text{ to } n & \text{ do} \\
& F[i] \leftarrow F[i - 1] + F[i - 2] \\
\text{return } F[n]
\end{align*}
\]

What is the running time of the algorithm? \(O(n) \) additions.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. **Memoization**.

Dynamic Programming:

Finding a recursion that can be *effectively/efficiently* memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. **Memoization.**

Dynamic Programming:

Finding a recursion that can be *effectively/efficiently* memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n) : \\
\quad \text{if } (n = 0) \\
\quad \quad \text{return } 0 \\
\quad \text{if } (n = 1) \\
\quad \quad \text{return } 1 \\
\quad \text{if } (\text{Fib}(n) \text{ was previously computed}) \\
\quad \quad \text{return stored value of Fib}(n) \\
\quad \text{else} \\

\quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\]

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[\text{Fib}(n) : \]
\[
\begin{align*}
\text{if } (n = 0) & \quad \text{return 0} \\
\text{if } (n = 1) & \quad \text{return 1} \\
\text{if } (\text{Fib}(n) \text{ was previously computed}) & \quad \text{return stored value of Fib}(n) \\
\text{else} & \quad \text{return Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)
Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n) :
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{if } (n = 1) & \quad \text{return } 1 \\
\text{if } (\text{Fib}(n) \text{ was previously computed}) & \quad \text{return stored value of Fib}(n) \\
\text{else} & \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n) :
\begin{align*}
& \text{if } (n = 0) \\
& \quad \text{return } 0 \\
& \text{if } (n = 1) \\
& \quad \text{return } 1 \\
& \text{if } (\text{Fib}(n) \text{ was previously computed}) \\
& \quad \text{return stored value of Fib}(n) \\
& \text{else} \\
& \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
Automatic explicit memoization

Initialize table/array M of size n such that $M[i] = -1$ for $0 \leq i < n$

$\text{Fib}(n)$:

$\text{if} \ (n = 0)$
\hspace{1em} $\text{return} \ 0$

$\text{if} \ (n = 1)$
\hspace{1em} $\text{return} \ 1$

$\text{if} \ (M[n] \neq -1) \ (*) M[n] \text{ has stored value of } \text{Fib}(n) (*)$
\hspace{1em} $\text{return} \ M[n]$

$M[n] \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$

$\text{return} \ M[n]$

Need to know upfront the number of subproblems to allocate memory
Automatic explicit memoization

Initialize table/array M of size n such that $M[i] = -1$ for $0 \leq i < n$

$\text{Fib}(n)$:

 if ($n = 0$)
 return 0

 if ($n = 1$)
 return 1

 if ($M[n] \neq -1$) (* $M[n]$ has stored value of $\text{Fib}(n)$ *)
 return $M[n]$

 $M[n] \leftarrow \text{Fib}(n-1) + \text{Fib}(n-2)$

 return $M[n]$

Need to know upfront the number of subproblems to allocate memory
Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

\[
\text{Fib}(n) : \\
\text{if} \ (n = 0) \\
\quad \text{return} \ 0 \\
\text{if} \ (n = 1) \\
\quad \text{return} \ 1 \\
\text{if} \ (n \text{ is already in } D) \\
\quad \text{return} \ \text{value stored with } n \ \text{in } D \\
\text{val} \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2) \\
\text{Store } (n, \text{val}) \ \text{in } D \\
\text{return} \ \text{val}
\]
Explicit vs Implicit Memoization

- Explicit memoization or iterative algorithm preferred if one can analyze problem ahead of time. Allows for efficient memory allocation and access.

- Implicit and automatic memoization used when problem structure or algorithm is either not well understood or in fact unknown to the underlying system.
 - Need to pay overhead of data-structure.
 - Functional languages such as LISP automatically do memoization, usually via hashing based dictionaries.
Is the iterative algorithm a *polynomial* time algorithm? Does it take $O(n)$ time?

- input is n and hence input size is $\Theta(\log n)$
- output is $F(n)$ and output size is $\Theta(n)$. Why?
- Hence output size is exponential in input size so no polynomial time algorithm possible!
- Running time of iterative algorithm: $\Theta(n)$ additions but number sizes are $O(n)$ bits long! Hence total time is $O(n^2)$, in fact $\Theta(n^2)$. Why?
- Running time of recursive algorithm is $O(n\phi^n)$ but can in fact shown to be $O(\phi^n)$ by being careful. Doubly exponential in input size and exponential even in output size.
Is the iterative algorithm a *polynomial* time algorithm? Does it take \(O(n) \) time?

- input is \(n \) and hence input size is \(\Theta(\log n) \)
- output is \(F(n) \) and output size is \(\Theta(n) \). Why?

Hence output size is exponential in input size so no polynomial time algorithm possible!

- Running time of iterative algorithm: \(\Theta(n) \) additions but number sizes are \(O(n) \) bits long! Hence total time is \(O(n^2) \), in fact \(\Theta(n^2) \). Why?

- Running time of recursive algorithm is \(O(n\phi^n) \) but can in fact shown to be \(O(\phi^n) \) by being careful. Doubly exponential in input size and exponential even in output size.
Part III

Brute Force Search, Recursion and Backtracking
Maximum Independent Set in a Graph

Definition

Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Some independent sets in graph above:
Input Graph $G = (V, E)$

Goal Find maximum sized independent set in G
Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$

Goal Find maximum weight independent set in G
Maximum Weight Independent Set Problem

- No one knows an \textit{efficient} (polynomial time) algorithm for this problem.
- Problem is \textbf{NP-Complete} and it is \textit{believed} that there is no polynomial time algorithm.

\begin{footnotesize}
\textbf{Brute-force algorithm:}
\end{footnotesize}

Try all subsets of vertices.
Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

\[\text{MaxIndSet}(G = (V, E)) : \]
\[\text{max} = 0 \]
\[\text{for each subset } S \subseteq V \text{ do} \]
\[\text{check if } S \text{ is an independent set} \]
\[\text{if } S \text{ is an independent set and } w(S) > \text{max} \text{ then} \]
\[\text{max} = w(S) \]
\[\text{Output } \text{max} \]

Running time: suppose \(G \) has \(n \) vertices and \(m \) edges

- \(2^n \) subsets of \(V \)
- checking each subset \(S \) takes \(O(m) \) time
- total time is \(O(m2^n) \)
Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet\((G = (V, E))\):

\[
\begin{align*}
\text{max} & = 0 \\
\text{for each subset } S \subseteq V \text{ do} \\
& \quad \text{check if } S \text{ is an independent set} \\
& \quad \text{if } S \text{ is an independent set and } w(S) > \text{max} \text{ then} \\
& \quad \quad \text{max} = w(S) \\
\text{Output } \text{max}
\end{align*}
\]

Running time: suppose \(G\) has \(n\) vertices and \(m\) edges

- \(2^n\) subsets of \(V\)
- checking each subset \(S\) takes \(O(m)\) time
- total time is \(O(m2^n)\)
A Recursive Algorithm

Let \(V = \{v_1, v_2, \ldots, v_n\} \).
For a vertex \(u \) let \(N(u) \) be its neighbors.

Observation

\(v_n \): Vertex in the graph.
One of the following two cases is true

Case 1 \(v_n \) is in some maximum independent set.
Case 2 \(v_n \) is in no maximum independent set.

\text{RecursiveMIS}(G):
\[
\text{if } G \text{ is empty then Output 0 }
\]
\[
a = \text{RecursiveMIS}(G - v_n)
\]
\[
b = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n))
\]
Output \(\max(a, b) \)
A Recursive Algorithm

Let \(V = \{v_1, v_2, \ldots, v_n\} \).

For a vertex \(u \) let \(N(u) \) be its neighbors.

Observation

\(v_n \): Vertex in the graph.

One of the following two cases is true

1. **Case 1** \(v_n \) is in some maximum independent set.
2. **Case 2** \(v_n \) is in no maximum independent set.

RecursiveMIS(\(G \)):

1. If \(G \) is empty then Output 0
2. \(a = \text{RecursiveMIS}(G - v_n) \)
3. \(b = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n)) \)
4. Output \(\max(a, b) \)
A Recursive Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$. For a vertex u let $N(u)$ be its neighbors.

Observation

v_n: Vertex in the graph.

One of the following two cases is true

Case 1 v_n is in some maximum independent set.

Case 2 v_n is in no maximum independent set.

RecursiveMIS(G):

if G is empty then Output 0

$a = \text{RecursiveMIS}(G - v_n)$

$b = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n))$

Output $\max(a, b)$
Running time:

\[T(n) = T(n - 1) + T\left(n - 1 - \text{deg}(v_n)\right) + O(1 + \text{deg}(v_n)) \]

where \(\text{deg}(v_n) \) is the degree of \(v_n \). \(T(0) = T(1) = 1 \) is base case.

Worst case is when \(\text{deg}(v_n) = 0 \) when the recurrence becomes

\[T(n) = 2T(n - 1) + O(1) \]

Solution to this is \(T(n) = O(2^n) \).
Backtrack Search via Recursion

- Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem).
- Simple recursive algorithm computes/explores the whole tree blindly in some order.
- Backtrack search is a way to explore the tree intelligently to prune the search space.
 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method.
 - Memoization to avoid recomputing same problem.
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.