Binary Search, Introduction to Dynamic Programming

Lecture 7
February 8, 2011

Part I

Exponentiation, Binary Search
Exponentiation

Input Two numbers: \(a \) and integer \(n \geq 0 \)

Goal Compute \(a^n \)

Obvious algorithm:

\[
\text{SlowPow}(a,n):
\begin{align*}
x &= 1; \\
&\text{for } i = 1 \text{ to } n \text{ do} \\
&\quad x = x \times a \\
&\text{Output } x
\end{align*}
\]

\(O(n) \) multiplications.

Fast Exponentiation

Observation: \(a^n = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} = a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} a^{\lfloor n/2 \rfloor} - \lfloor n/2 \rfloor}. \]

\[
\text{FastPow}(a,n):
\begin{align*}
&\text{if } (n = 0) \text{ return } 1 \\
&x = \text{FastPow}(a,\lfloor n/2 \rfloor) \\
&x = x \times x \\
&\text{if } (n \text{ is odd}) \text{ then} \\
&\quad x = x \times a \\
&\text{return } x
\end{align*}
\]

\(T(n) \): number of multiplications for \(n \)

\[
T(n) \leq T(\lfloor n/2 \rfloor) + 2
\]

\(T(n) = \Theta(\log n) \).
Complexity of Exponentiation

Question: Is \texttt{SlowPow()} a polynomial time algorithm? \texttt{FastPow}?
Input size: \(\log a + \log n \)
Output size: \(n \log a \). Not necessarily polynomial in input size!
Both \texttt{SlowPow} and \texttt{FastPow} are polynomial in output size.

Exponentiation modulo a given number

Exponentiation in applications:

Input: Three integers: \(a, n \geq 0, p \geq 2 \) (typically a prime)
Goal: Compute \(a^n \mod p \)

Input size: \(\Theta(\log a + \log n + \log p) \)
Output size: \(O(\log p) \) and hence polynomial in input size.

Observation: \(xy \mod p = ((x \mod p)(y \mod p)) \mod p \)
Exponentiation modulo a given number

Input Three integers: \(a, n \geq 0, p \geq 2\) (typically a prime)
Goal Compute \(a^n \mod p\)

FastPowMod\((a, n, p)\):
 \(\text{if } (n = 0) \text{ return } 1\)
 \(x = \text{FastPowMod}(a, [n/2], p)\)
 \(x = x^2 \mod p\)
 \(\text{if } (n \text{ is odd})\)
 \(x = x \cdot a \mod p\)
 \(\text{return } x\)

FastPowMod is a polynomial time algorithm. SlowPowMod is not (why?).

Binary Search in Sorted Arrays

Input Sorted array \(A\) of \(n\) numbers and number \(x\)
Goal Is \(x\) in \(A\)?

BinarySearch\((A[a..b], x)\):
 \(\text{if } (b - a <= 0) \text{ return NO}\)
 \(\text{mid} = A[[\lfloor (a + b)/2 \rfloor]]\)
 \(\text{if } (x = \text{mid}) \text{ return YES}\)
 \(\text{if } (x < \text{mid})\)
 \(\text{return BinarySearch}(A[a..\lfloor (a + b)/2 \rfloor - 1], x)\)
 \(\text{else}\)
 \(\text{return BinarySearch}(A[\lfloor (a + b)/2 \rfloor + 1..b], x)\)

Analysis: \(T(n) = T(\lfloor n/2 \rfloor) + O(1)\). \(T(n) = O(\log n)\).
Observation: After \(k\) steps, size of array left is \(n/2^k\)
Another common use of binary search

- **Optimization version**: find solution of best (say minimum) value
- **Decision version**: is there a solution of value at most a given value v?

Reduce optimization to decision (may be easier to think about):

- Given instance I compute upper bound $U(I)$ on best value
- Compute lower bound $L(I)$ on best value
- Do binary search on interval $[L(I), U(I)]$ using decision version as black box
- $O(\log(U(I) - L(I)))$ calls to decision version if $U(I), L(I)$ are integers

Example

- **Problem**: shortest paths in a graph.
- **Decision version**: given G with non-negative integer edge lengths, nodes s, t and bound B, is there an s-t path in G of length at most B?
- **Optimization version**: find the length of a shortest path between s and t in G.

Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?
Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?

- Let U be maximum edge length in G.
- Minimum edge length is L.
- s-t shortest path length is at most $(n - 1)U$ and at least L.
- Apply binary search on the interval $[L, (n - 1)U]$ via the algorithm for the decision problem.
- $O(\log((n - 1)U - L))$ calls to the decision problem algorithm sufficient. Polynomial in input size.

Part II

Introduction to Dynamic Programming
Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction
- reduce problem to a *smaller* instance of *itself*
- self-reduction

- Problem instance of size \(n \) is reduced to one or more instances of size \(n - 1 \) or less.
- For termination, problem instances of small size are solved by some other method as *base cases*.

Recursion in Algorithm Design

- **Tail Recursion**: problem reduced to a *single* recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.
- **Divide and Conquer**: Problem reduced to multiple *independent* sub-problems that are solved separately. Conquer step puts together solution for bigger problem.
- **Dynamic Programming**: problem reduced to multiple (typically) *dependent or overlapping* sub-problems. Use *memoization* to avoid recomputation of common solutions leading to *iterative bottom-up* algorithm.
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \]
\[F(0) = 0, F(1) = 1. \]

These numbers have many interesting and amazing properties.
A journal *The Fibonacci Quarterly*

\[F(n) = \left(\phi^n - (1 - \phi)^n \right) / \sqrt{5} \text{ where } \phi \text{ is the golden ratio} \]
\[(1 + \sqrt{5})/2 \approx 1.618. \]
\[\lim_{n \to \infty} F(n + 1)/F(n) = \phi \]

Question: Given \(n \), compute \(F(n) \).

Recursive Algorithm for Fibonacci Numbers

\[
\text{Fib}(n):
\begin{align*}
&\text{if } (n = 0) \\
&\quad \text{return } 0 \\
&\text{else if } (n = 1) \\
&\quad \text{return } 1 \\
&\text{else} \\
&\quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

Running time? Let \(T(n) \) be the number of additions in Fib(n).

\[T(n) = T(n - 1) + T(n - 2) + 1 \text{ and } T(0) = T(1) = 0 \]

Roughly same as \(F(n) \)

\[T(n) = \Theta(\phi^n) \]

The number of additions is exponential in \(n \). Can we do better?
An iterative algorithm for Fibonacci numbers

```python
FibIter(n):
    if (n == 0) then
        return 0
    else if (n == 1) then
        return 1
    else
        F[0] = 0
        F[1] = 1
        for i = 2 to n do
            F[i] ← F[i − 1] + F[i − 2]
        return F[n]
```

What is the running time of the algorithm? \(O(n)\) additions.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[\text{Fib}(n) : \]
\[\quad \text{if } (n = 0) \]
\[\quad \quad \text{return } 0 \]
\[\quad \text{if } (n = 1) \]
\[\quad \quad \text{return } 1 \]
\[\quad \text{if } (\text{Fib}(n) \text{ was previously computed}) \]
\[\quad \quad \text{return stored value of Fib}(n) \]
\[\quad \text{else} \]
\[\quad \quad \text{return Fib}(n - 1) + \text{Fib}(n - 2) \]

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Automatic explicit memoization

Initialize table/array \(M \) of size \(n \) such that \(M[i] = -1 \) for \(0 \leq i < n \)

\[\text{Fib}(n) : \]
\[\quad \text{if } (n = 0) \]
\[\quad \quad \text{return } 0 \]
\[\quad \text{if } (n = 1) \]
\[\quad \quad \text{return } 1 \]
\[\quad \text{if } (M[n] \neq -1) (*) M[n] \text{ has stored value of Fib}(n) (*) \]
\[\quad \quad \text{return } M[n] \]
\[M[n] \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2) \]
\[\text{return } M[n] \]

Need to know upfront the number of subproblems to allocate memory
Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

$\text{Fib}(n)$:
 if ($n = 0$)
 return 0
 if ($n = 1$)
 return 1
 if (n is already in D)
 return value stored with n in D
 val $\leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$
 Store (n, val) in D
 return val

Explicit vs Implicit Memoization

- Explicit memoization or iterative algorithm preferred if one can analyze problem ahead of time. Allows for efficient memory allocation and access.
- Implicit and automatic memoization used when problem structure or algorithm is either not well understood or in fact unknown to the underlying system.
 - Need to pay overhead of data-structure.
 - Functional languages such as LISP automatically do memoization, usually via hashing based dictionaries.
Is the iterative algorithm a *polynomial* time algorithm? Does it take $O(n)$ time?

- input is n and hence input size is $\Theta(\log n)$
- output is $F(n)$ and output size is $\Theta(n)$. Why?
- Hence output size is exponential in input size so no polynomial time algorithm possible!
- Running time of iterative algorithm: $\Theta(n)$ additions but number sizes are $O(n)$ bits long! Hence total time is $O(n^2)$, in fact $\Theta(n^2)$. Why?
- Running time of recursive algorithm is $O(n\phi^n)$ but can in fact shown to be $O(\phi^n)$ by being careful. Doubly exponential in input size and exponential even in output size.

Part III

Brute Force Search, Recursion and Backtracking
Maximum Independent Set in a Graph

Definition

Given undirected graph \(G = (V, E) \) a subset of nodes \(S \subseteq V \) is an independent set (also called a stable set) if for there are no edges between nodes in \(S \). That is, if \(u, v \in S \) then \((u, v) \notin E \).

Some independent sets in graph above:

```
A B C
D E F
```

Maximum Independent Set Problem

Input Graph \(G = (V, E) \)

Goal Find maximum sized independent set in \(G \)
Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$
Goal Find maximum weight independent set in G

No one knows an efficient (polynomial time) algorithm for this problem
Problem is NP-Complete and it is believed that there is no polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet\((G = (V, E))\):

\[
\begin{align*}
\text{max} & = 0 \\
\text{for each subset } S & \subseteq V \\
& \quad \text{check if } S \text{ is an independent set} \\
& \quad \text{if } S \text{ is an independent set and } w(S) > \text{max} \text{ then} \\
& \quad \quad \text{max} = w(S) \\
\text{Output} & \quad \text{max}
\end{align*}
\]

Running time: suppose \(G\) has \(n\) vertices and \(m\) edges

- \(2^n\) subsets of \(V\)
- checking each subset \(S\) takes \(O(m)\) time
- total time is \(O(m2^n)\)

A Recursive Algorithm

Let \(V = \{v_1, v_2, \ldots, v_n\}\).

For a vertex \(u\) let \(N(u)\) be its neighbors.

Observation

\(v_n\): Vertex in the graph.

One of the following two cases is true

- **Case 1** \(v_n\) is in some maximum independent set.
- **Case 2** \(v_n\) is in no maximum independent set.

RecursiveMIS\((G)\):

\[
\begin{align*}
\text{if } G \text{ is empty then Output } 0 \\
\quad a & = \text{RecursiveMIS}(G - v_n) \\
\quad b & = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n)) \\
\text{Output} & \quad \text{max}(a, b)
\end{align*}
\]
Recursive Algorithms

..for Maximum Independent Set

Running time:

\[
T(n) = T(n - 1) + T\left(n - 1 - \deg(v_n)\right) + O(1 + \deg(v_n))
\]

where \(\deg(v_n)\) is the degree of \(v_n\). \(T(0) = T(1) = 1\) is base case.

Worst case is when \(\deg(v_n) = 0\) when the recurrence becomes

\[
T(n) = 2T(n - 1) + O(1)
\]

Solution to this is \(T(n) = O(2^n)\).

Backtrack Search via Recursion

- Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem)
- Simple recursive algorithm computes/explores the whole tree blindly in some order.
- Backtrack search is a way to explore the tree intelligently to prune the search space
 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method
 - Memoization to avoid recomputing same problem
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.