Recurrences, Closest Pair and Selection

Lecture 6
February 3, 2011
Part I

Recurrences
Solving Recurrences

Two general methods:

- Recursion tree method: need to do sums
 - elementary methods, geometric series
 - integration

- Guess and Verify
 - guessing involves intuition, experience and trial & error
 - verification is via induction
Recurrence: Example I

- Consider $T(n) = 2T(n/2) + n/\log n$.
- Construct recursion tree, and observe pattern. The ith level has 2^i nodes, and problem size at each node is $n/2^i$ and hence work at each node is $n/2^i/\log n/2^i$.
- Summing over all levels

$$T(n) = \sum_{i=0}^{\log n-1} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]$$

$$= \sum_{i=0}^{\log n-1} \frac{n}{\log n - i}$$

$$= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n)$$
Recurrence: Example I

- Consider \(T(n) = 2T(n/2) + n/\log n \).
- Construct recursion tree, and observe pattern. \(i \)th level has \(2^i \) nodes, and problem size at each node is \(n/2^i \) and hence work at each node is \(n/2^i/\log n/2^i \).
- Summing over all levels

\[
T(n) = \sum_{i=0}^{\log n - 1} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]
\]

\[
= \sum_{i=0}^{\log n - 1} \frac{n}{\log n - i}
\]

\[
= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n)
\]
Consider \(T(n) = 2T(n/2) + n/\log n \).

Construct recursion tree, and observe pattern. The \(i \)th level has \(2^i \) nodes, and problem size at each node is \(n/2^i \) and hence work at each node is \(n/2^i / \log n \).

Summing over all levels:

\[
T(n) = \sum_{i=0}^{\log n-1} 2^i \left(\frac{n/2^i}{\log(n/2^i)} \right)
\]

\[
= \sum_{i=0}^{\log n-1} \frac{n}{\log n - i}
\]

\[
= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n)
\]
Recurrence: Example I

- Consider $T(n) = 2T(n/2) + n/\log n$.
- Construct recursion tree, and observe pattern. ith level has 2^i nodes, and problem size at each node is $n/2^i$ and hence work at each node is $\frac{n}{2^i}/\log \frac{n}{2^i}$.
- Summing over all levels

$$T(n) = \sum_{i=0}^{\log n - 1} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]$$

$$= \sum_{i=0}^{\log n - 1} \frac{n}{\log n - i}$$

$$= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n)$$
Consider.

What is the depth of recursion? $\sqrt{n}, \sqrt[4]{n}, \sqrt[8]{n}, \ldots, O(1)$

Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$

Number of children at each level is 1, work at each node is 1

Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.
Consider.

What is the depth of recursion? $\sqrt{n}, \sqrt[4]{n}, \sqrt[8]{n}, \ldots, O(1)$

Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$

Number of children at each level is 1, work at each node is 1

Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.
Consider.

What is the depth of recursion? $\sqrt{n}, \sqrt[3]{n}, \sqrt[4]{n}, \ldots, O(1)$

Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$

Number of children at each level is 1, work at each node is 1.

Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.
Consider.

What is the depth of recursion? $\sqrt{n}, \sqrt[3]{n}, \sqrt[4]{n}, \ldots, O(1)$

Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$

Number of children at each level is 1, work at each node is 1

Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.
Consider.

What is the depth of recursion? \(\sqrt{n}, \sqrt[4]{n}, \sqrt{\sqrt{n}}, \ldots, O(1) \)

Number of levels: \(n^{2^{-L}} = 2 \) means \(L = \log \log n \)

Number of children at each level is 1, work at each node is 1

Thus, \(T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n) \).
Recurrence: Example III

- Consider $T(n) = \sqrt{n} T(\sqrt{n}) + n$.
- Using recursion trees: number of levels $L = \log \log n$
- Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$, so on. Can check that each level is n.
- Thus, $T(n) = \Theta(n \log \log n)$
Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$.

Using recursion trees: number of levels $L = \log \log n$

Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$, so on. Can check that each level is n.

Thus, $T(n) = \Theta(n \log \log n)$
Consider $T(n) = \sqrt{n} T(\sqrt{n}) + n$.

Using recursion trees: number of levels $L = \log \log n$.

Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$, so on. Can check that each level is n.

Thus, $T(n) = \Theta(n \log \log n)$.
Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$.

Using recursion trees: number of levels $L = \log \log n$

Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$, so on. Can check that each level is n.

Thus, $T(n) = \Theta(n \log \log n)$
Consider \(T(n) = T(n/4) + T(3n/4) + n \).

Using recursion tree, we observe the tree has leaves at different levels (a \textit{lopsided} tree).

Total work in any level is at most \(n \). Total work in any level without leaves is exactly \(n \).

Highest leaf is at level \(\log_4 n \) and lowest leaf is at level \(\log_{4/3} n \).

Thus, \(n \log_4 n \leq T(n) \leq n \log_{4/3} n \), which means \(T(n) = \Theta(n \log n) \).
Recurrence: Example IV

- Consider \(T(n) = T(n/4) + T(3n/4) + n \).
- Using recursion tree, we observe the tree has leaves at different levels (a \textit{lop-sided} tree).
- Total work in any level is at most \(n \). Total work in any level without leaves is exactly \(n \).
- Highest leaf is at level \(\log_4 n \) and lowest leaf is at level \(\log_{4/3} n \).
- Thus, \(n \log_4 n \leq T(n) \leq n \log_{4/3} n \), which means \(T(n) = \Theta(n \log n) \)
Consider \(T(n) = T(n/4) + T(3n/4) + n \).

Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).

Total work in any level is at most \(n \). Total work in any level without leaves is exactly \(n \).

Highest leaf is at level \(\log_4 n \) and lowest leaf is at level \(\log_{4/3} n \).

Thus, \(n \log_4 n \leq T(n) \leq n \log_{4/3} n \), which means \(T(n) = \Theta(n \log n) \).
Consider \(T(n) = T(n/4) + T(3n/4) + n \).

Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).

Total work in any level is at most \(n \). Total work in any level without leaves is exactly \(n \).

Highest leaf is at level \(\log_4 n \) and lowest leaf is at level \(\log_{4/3} n \).

Thus, \(n \log_4 n \leq T(n) \leq n \log_{4/3} n \), which means \(T(n) = \Theta(n \log n) \).
Consider $T(n) = T(n/4) + T(3n/4) + n$.

Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).

Total work in any level is at most n. Total work in any level without leaves is exactly n.

Highest leaf is at level $\log_4 n$ and lowest leaf is at level $\log_{4/3} n$.

Thus, $n \log_4 n \leq T(n) \leq n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$.
Part II

Closest Pair
Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find $p, q \in S$ such that $d(p, q)$ is minimum
Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find $p, q \in S$ such that $d(p, q)$ is minimum

[Diagram of points on a plane with two points highlighted, possibly indicating the closest pair.]
Applications

- Basic primitive used in graphics, vision, molecular modelling
- Ideas used in solving nearest neighbor, Voronoi diagrams, Euclidean MST
Algorithm: Brute Force

- Compute distance between every pair of points and find minimum
- Takes $O(n^2)$ time
- Can we do better?
Algorithm: Brute Force

- Compute distance between every pair of points and find minimum
- Takes $O(n^2)$ time
- Can we do better?
Algorithm: Brute Force

- Compute distance between every pair of points and find minimum
- Takes $O(n^2)$ time
- Can we do better?
Input: Given a set S of n points on a line

Goal: Find $p, q \in S$ such that $d(p, q)$ is minimum

Algorithm

1. Sort points based on coordinate
2. Compute the distance between successive points, keeping track of the closest pair.

Running time $O(n \log n)$

Can we do this in better running time?
Can reduce Distinct Elements Problem (see lecture 1) to this problem in $O(n)$ time. Do you see how?
Closest Pair: 1-d case

Input
Given a set S of n points on a line

Goal
Find $p, q \in S$ such that $d(p, q)$ is minimum

Algorithm

1. Sort points based on coordinate
2. Compute the distance between successive points, keeping track of the closest pair.

Running time $O(n \log n)$

Can we do this in better running time?
Can reduce Distinct Elements Problem (see lecture 1) to this problem in $O(n)$ time. Do you see how?
Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?
Sort according to x or y-coordinate??

No easy generalization.
Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?
Sort according to x or y-coordinate??
No easy generalization.
First Attempt

Divide and Conquer I

1. Partition into 4 quadrants of roughly equal size. Not always!
2. Find closest pair in each quadrant recursively
3. Combine solutions

Partition into 4 quadrants of roughly equal size.

Find closest pair in each quadrant recursively

Combine solutions
First Attempt

Divide and Conquer I

1. Partition into 4 quadrants of roughly equal size. Not always!
2. Find closest pair in each quadrant recursively
3. Combine solutions
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions

Sariel (UIUC)
CS473
Fall 2011
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions

- Sort points based on x-coordinate and pick the median. Time $= O(n \log n)$
- How to find closest pair with points in different halves? $O(n^2)$ is trivial. Better?
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions

- Sort points based on x-coordinate and pick the median. Time $= O(n \log n)$
- How to find closest pair with points in different halves? $O(n^2)$ is trivial. Better?
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions

- Sort points based on x-coordinate and pick the median. Time $= O(n \log n)$
- How to find closest pair with points in different halves? $O(n^2)$ is trivial. Better?
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions

- Sort points based on \(x \)-coordinate and pick the median. Time

\[= O(n \log n) \]

- How to find closest pair with points in different halves? \(O(n^2) \) is trivial. Better?
New Algorithm

Divide and Conquer II

1. Divide the set of points into two equal parts via vertical line
2. Find closest pair in each half recursively
3. Find closest pair with one point in each half
4. Return the best pair among the above 3 solutions

- Sort points based on x-coordinate and pick the median. Time $= O(n \log n)$
- How to find closest pair with points in different halves? $O(n^2)$ is trivial. Better?
Combining Partial Solutions

- Does it take $O(n^2)$ to combine solutions?
- Let δ be the distance between closest pairs, where both points belong to the same half.
Let δ be the distance between closest pairs, where both points belong to the same half.

Need to consider points within δ of dividing line.
Divide the band into square boxes of size $\delta/2$

Lemma

Each box has at most one point

Proof.

If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!
Sparsity of Band

Divide the band into square boxes of size $\delta/2$

Lemma

Each box has at most one point

Proof.

If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!
Sparsity of Band

Divide the band into square boxes of size $\delta/2$

Lemma

Each box has at most one point

Proof.

If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!
Lemma

Suppose \(a, b \) are at distance less than \(\delta \) in the band. Then \(a, b \) have at most two rows of boxes between them.

Proof.

Each row of boxes has height \(\delta/2 \). If more than two rows then distance between \(a, b \) greater than \(\delta \).
Lemma

Suppose \(a, b\) are at distance less than \(\delta\) in the band. Then \(a, b\) have at most two rows of boxes between them.

Proof.

Each row of boxes has height \(\frac{\delta}{2}\). If more than two rows then distance between \(a, b\) greater than \(\delta\).
Corollary

Order points according to their y-coordinate. If p, q are such that $d(p, q) < \delta$ then p and q are within 11 positions in the sorted list.

Proof.

- ≤ 2 points between them if p and q in same row.
- ≤ 6 points between them if p and q in two consecutive rows.
- ≤ 10 points between if p and q one row apart.
- \implies More than ten points between them in the sorted y order than p and q are more than two rows apart.
- $\implies d(p, q) > \delta$. A contradiction.
The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P_1 and P_2
2. $\delta_1 \leftarrow \text{ClosestPair}(P_1)$.
3. $\delta_2 \leftarrow \text{ClosestPair}(P_2)$.
4. $\delta = \min(\delta_1, \delta_2)$
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for $i = 1$ to $|A| - 1$ do
 for $j = i + 1$ to $\min\{i + 11, |A|\}$ do
 if ($\text{dist}(A[i], A[j]) < \delta$) update δ and closest pair

- Step 1, involves sorting and scanning. Takes $O(n \log n)$ time.
- Step 5 takes $O(n)$ time
- Step 6 takes $O(n \log n)$ time
- Step 7 takes $O(n)$ time
The Algorithm

ClosestPair(P):
1. Find vertical line \(L \) splits \(P \) into equal halves: \(P_1 \) and \(P_2 \)
2. \(\delta_1 \leftarrow \text{ClosestPair}(P_1) \).
3. \(\delta_2 \leftarrow \text{ClosestPair}(P_2) \).
4. \(\delta = \min(\delta_1, \delta_2) \)
5. Delete points from \(P \) further than \(\delta \) from \(L \)
6. Sort \(P \) based on \(y \)-coordinate into an array \(A \)
7. for \(i = 1 \) to \(|A| - 1 \) do
 for \(j = i + 1 \) to \(\min\{i + 11, |A|\} \) do
 if \((\text{dist}(A[i], A[j]) < \delta) \) update \(\delta \) and closest pair

- Step 1, involves sorting and scanning. Takes \(O(n \log n) \) time.
- Step 5 takes \(O(n) \) time
- Step 6 takes \(O(n \log n) \) time
- Step 7 takes \(O(n) \) time
The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P_1 and P_2
2. $\delta_1 \leftarrow \text{ClosestPair}(P_1)$.
3. $\delta_2 \leftarrow \text{ClosestPair}(P_2)$.
4. $\delta = \min(\delta_1, \delta_2)$
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for $i = 1$ to $|A| - 1$ do
 for $j = i + 1$ to $\min\{i + 11, |A|\}$ do
 if ($\text{dist}(A[i], A[j]) < \delta$) update δ and closest pair

• Step 1, involves sorting and scanning. Takes $O(n \log n)$ time.
• Step 5 takes $O(n)$ time
• Step 6 takes $O(n \log n)$ time
• Step 7 takes $O(n)$ time
The Algorithm

ClosestPair(\(P\)):

1. Find vertical line \(L\) splits \(P\) into equal halves: \(P_1\) and \(P_2\)
2. \(\delta_1 \leftarrow \text{ClosestPair}(P_1)\).
3. \(\delta_2 \leftarrow \text{ClosestPair}(P_2)\).
4. \(\delta = \min(\delta_1, \delta_2)\)
5. Delete points from \(P\) further than \(\delta\) from \(L\)
6. Sort \(P\) based on \(y\)-coordinate into an array \(A\)
7. for \(i = 1\) to \(|A| - 1\) do

 for \(j = i + 1\) to \(\min\{i + 11, |A|\}\) do

 if \((\text{dist}(A[i], A[j]) < \delta)\) update \(\delta\) and closest pair

- Step 1, involves sorting and scanning. Takes \(O(n \log n)\) time.
- Step 5 takes \(O(n)\) time
- Step 6 takes \(O(n \log n)\) time
- Step 7 takes \(O(n)\) time
The Algorithm

ClosestPair(P):

1. Find vertical line L splits P into equal halves: P_1 and P_2
2. $\delta_1 \leftarrow \text{ClosestPair}(P_1)$.
3. $\delta_2 \leftarrow \text{ClosestPair}(P_2)$.
4. $\delta = \min(\delta_1, \delta_2)$
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for $i = 1$ to $|A| - 1$ do
 for $j = i + 1$ to $\min\{i + 11, |A|\}$ do
 if ($\text{dist}(A[i], A[j]) < \delta$) update δ and closest pair

- Step 1, involves sorting and scanning. Takes $O(n \log n)$ time.
- Step 5 takes $O(n)$ time
- Step 6 takes $O(n \log n)$ time
- Step 7 takes $O(n)$ time
The Algorithm

ClosestPair(\(P\)):
1. Find vertical line \(L\) splits \(P\) into equal halves: \(P_1\) and \(P_2\)
2. \(\delta_1 \leftarrow \text{ClosestPair}(P_1)\).
3. \(\delta_2 \leftarrow \text{ClosestPair}(P_2)\).
4. \(\delta = \min(\delta_1, \delta_2)\)
5. Delete points from \(P\) further than \(\delta\) from \(L\)
6. Sort \(P\) based on \(y\)-coordinate into an array \(A\)
7. for \(i = 1\) to \(|A| - 1\) do
 for \(j = i + 1\) to \(\min\{i + 11, |A|\}\) do
 if \((\text{dist}(A[i], A[j]) < \delta)\) update \(\delta\) and closest pair

- Step 1, involves sorting and scanning. Takes \(O(n \log n)\) time.
- Step 5 takes \(O(n)\) time
- Step 6 takes \(O(n \log n)\) time
- Step 7 takes \(O(n)\) time
The Algorithm

ClosestPair\((P) \):

1. Find vertical line \(L \) splits \(P \) into equal halves: \(P_1 \) and \(P_2 \)
2. \(\delta_1 \leftarrow \text{ClosestPair}(P_1) \).
3. \(\delta_2 \leftarrow \text{ClosestPair}(P_2) \).
4. \(\delta = \min(\delta_1, \delta_2) \)
5. Delete points from \(P \) further than \(\delta \) from \(L \)
6. Sort \(P \) based on \(y \)-coordinate into an array \(A \)
7. for \(i = 1 \) to \(|A| - 1 \) do
 for \(j = i + 1 \) to \(\min\{i + 11, |A|\} \) do
 if \(\text{dist}(A[i], A[j]) < \delta \) update \(\delta \) and closest pair

- Step 1, involves sorting and scanning. Takes \(O(n \log n) \) time.
- Step 5 takes \(O(n) \) time
- Step 6 takes \(O(n \log n) \) time
- Step 7 takes \(O(n) \) time
The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P_1 and P_2
2. $\delta_1 \leftarrow$ ClosestPair(P_1).
3. $\delta_2 \leftarrow$ ClosestPair(P_2).
4. $\delta = \min(\delta_1, \delta_2)$
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for $i = 1$ to $|A| - 1$ do
 for $j = i + 1$ to $\min\{i + 11, |A|\}$ do
 if ($\text{dist}(A[i], A[j]) < \delta$) update δ and closest pair

- Step 1, involves sorting and scanning. Takes $O(n \log n)$ time.
- Step 5 takes $O(n)$ time
- Step 6 takes $O(n \log n)$ time
- Step 7 takes $O(n)$ time
The Algorithm

ClosestPair(\(P\)):
1. Find vertical line \(L\) splits \(P\) into equal halves: \(P_1\) and \(P_2\)
2. \(\delta_1 \leftarrow \text{ClosestPair}(P_1)\).
3. \(\delta_2 \leftarrow \text{ClosestPair}(P_2)\).
4. \(\delta = \min(\delta_1, \delta_2)\)
5. Delete points from \(P\) further than \(\delta\) from \(L\)
6. Sort \(P\) based on \(y\)-coordinate into an array \(A\)
7. \(\text{for } i = 1 \text{ to } |A| - 1 \text{ do}
\quad \text{for } j = i + 1 \text{ to } \min\{i + 11, |A|\} \text{ do}
\quad \quad \text{if } (\text{dist}(A[i], A[j]) < \delta) \text{ update } \delta \text{ and closest pair}

- Step 1, involves sorting and scanning. Takes \(O(n \log n)\) time.
- Step 5 takes \(O(n)\) time
- Step 6 takes \(O(n \log n)\) time
- Step 7 takes \(O(n)\) time
The running time of the algorithm is given by

\[T(n) \leq 2T(n/2) + O(n \log n) \]

Thus, \(T(n) = O(n \log^2 n) \).

Improved Algorithm

Avoid repeated sorting of points in band: two options

- Sort all points by \(y \)-coordinate and store the list. In conquer step use this to avoid sorting

- Each recursive call returns a list of points sorted by their \(y \)-coordinates. Merge in conquer step in linear time.

Analysis: \(T(n) \leq 2T(n/2) + O(n) = O(n \log n) \)
Running Time

The running time of the algorithm is given by

\[T(n) \leq 2T(n/2) + O(n \log n) \]

Thus, \(T(n) = O(n \log^2 n) \).

Improved Algorithm

Avoid repeated sorting of points in band: two options

- Sort all points by \(y \)-coordinate and store the list. In conquer step use this to avoid sorting
- Each recursive call returns a list of points sorted by their \(y \)-coordinates. Merge in conquer step in linear time.

Analysis: \(T(n) \leq 2T(n/2) + O(n) = O(n \log n) \)
Running Time

The running time of the algorithm is given by

\[T(n) \leq 2T(n/2) + O(n \log n) \]

Thus, \(T(n) = O(n \log^2 n) \).

Improved Algorithm

Avoid repeated sorting of points in band: two options

- Sort all points by \(y \)-coordinate and store the list. In conquer step use this to avoid sorting
- Each recursive call returns a list of points sorted by their \(y \)-coordinates. Merge in conquer step in linear time.

Analysis: \(T(n) \leq 2T(n/2) + O(n) = O(n \log n) \)
Part III

Selecting in Unsorted Lists
Quick Sort [Hoare]

1. Pick a pivot element from array

2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it.
 Time is $O(n)$

3. Recursively sort the subarrays, and concatenate them.

Example:
- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- put them together with pivot in middle
Quick Sort

Quick Sort [Hoare]

1. Pick a pivot element from array
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $O(n)$
3. Recursively sort the subarrays, and concatenate them.

Example:
- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- put them together with pivot in middle
Quick Sort [Hoare]

1. Pick a pivot element from array
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $O(n)$
3. Recursively sort the subarrays, and concatenate them.

Example:

- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- put them together with pivot in middle
Quick Sort

Quick Sort [Hoare]

1. Pick a pivot element from array
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $O(n)$
3. Recursively sort the subarrays, and concatenate them.

Example:
- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- put them together with pivot in middle
Time Analysis

- Let k be the rank of the chosen pivot. Then,
 \[T(n) = T(k - 1) + T(n - k) + O(n) \]

- If $k = \lceil n/2 \rceil$ then
 \[T(n) = T(\lceil n/2 \rceil - 1) + T(\lceil n/2 \rceil) + O(n) \leq 2T(n/2) + O(n). \]
 Then, $T(n) = O(n \log n)$.

 - Theoretically, median can be found in linear time.

- Typically, pivot is the first or last element of array. Then,
 \[T(n) = \max_{1 \leq k \leq n} (T(k - 1) + T(n - k) + O(n)) \]

In the worst case $T(n) = T(n - 1) + O(n)$, which means $T(n) = O(n^2)$. Happens if array is already sorted and pivot is always first element.
Time Analysis

- Let k be the rank of the chosen pivot. Then,
 \[T(n) = T(k - 1) + T(n - k) + O(n) \]

- If $k = \lceil n/2 \rceil$ then
 \[T(n) = T(\lceil n/2 \rceil - 1) + T(\lfloor n/2 \rfloor) + O(n) \leq 2T(n/2) + O(n). \]
 Then, \[T(n) = O(n \log n). \]

- Theoretically, median can be found in linear time.

- Typically, pivot is the first or last element of array. Then,
 \[T(n) = \max_{1 \leq k \leq n} (T(k - 1) + T(n - k) + O(n)) \]

In the worst case \[T(n) = T(n - 1) + O(n), \] which means \[T(n) = O(n^2). \] Happens if array is already sorted and pivot is always first element.
Let k be the rank of the chosen pivot. Then,

$$T(n) = T(k - 1) + T(n - k) + O(n)$$

If $k = \lceil n/2 \rceil$ then

$$T(n) = T(\lceil n/2 \rceil - 1) + T(\lceil n/2 \rceil) + O(n) \leq 2T(n/2) + O(n).$$

Then, $T(n) = O(n \log n)$.

Theoretically, median can be found in linear time.

Typically, pivot is the first or last element of array. Then,

$$T(n) = \max_{1 \leq k \leq n} (T(k - 1) + T(n - k) + O(n))$$

In the worst case $T(n) = T(n - 1) + O(n)$, which means $T(n) = O(n^2)$. Happens if array is already sorted and pivot is always first element.
Let k be the rank of the chosen pivot. Then,
\[T(n) = T(k - 1) + T(n - k) + O(n) \]

If $k = \lceil n/2 \rceil$ then
\[T(n) = T(\lceil n/2 \rceil - 1) + T(\lfloor n/2 \rfloor) + O(n) \leq 2T(n/2) + O(n). \]

Then, $T(n) = O(n\log n)$.

Theoretically, median can be found in linear time.

Typically, pivot is the first or last element of array. Then,

\[T(n) = \max_{1 \leq k \leq n} (T(k - 1) + T(n - k) + O(n)) \]

In the worst case $T(n) = T(n - 1) + O(n)$, which means $T(n) = O(n^2)$. Happens if array is already sorted and pivot is always first element.
Problem - Selection

Input Unsorted array \(A \) of \(n \) integers

Goal Find the \(j \)'th smallest number in \(A \) (rank \(j \) number)

Example

\[A = \{4, 6, 2, 1, 5, 8, 7\} \] and \(j = 4 \). The \(j \)th smallest element is 5.

Median: \(j = \lfloor (n + 1)/2 \rfloor \)
Algorithm 1

1. Sort the elements in A
2. Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an $O(n)$ time algorithm?
Algorithm I

1. Sort the elements in A
2. Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an $O(n)$ time algorithm?
Algorithm II

If j is small or $n - j$ is small then

- Find j smallest/largest elements in A in $O(jn)$ time. (How?)
- Time to find median is $O(n^2)$.
Divide and Conquer Approach

1. Pick a pivot element a from A
2. Partition A based on a.
 \[A_{\text{less}} = \{ x \in A \mid x \leq a \} \text{ and } A_{\text{greater}} = \{ x \in A \mid x > a \} \]
3. $|A_{\text{less}}| = j$: return a
4. $|A_{\text{less}}| > j$: recursively find jth smallest element in A_{less}
5. $|A_{\text{less}}| < j$: recursively find kth smallest element in A_{greater}
 where $k = j - |A_{\text{less}}|$.
Time Analysis

- Partitioning step: $O(n)$ time to scan A
- How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$.
Exercise: show that algorithm takes $\Omega(n^2)$ time
Time Analysis

- Partitioning step: $O(n)$ time to scan A
- How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$.
Exercise: show that algorithm takes $\Omega(n^2)$ time
Time Analysis

- Partitioning step: $O(n)$ time to scan A
- How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$. Exercise: show that algorithm takes $\Omega(n^2)$ time.
A Better Pivot

Suppose pivot is the ℓ’th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is \textit{approximately} in the middle of A

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓ’th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is \textit{approximately} in the middle of A.

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
Suppose pivot is the \(\ell \)'th smallest element where \(\frac{n}{4} \leq \ell \leq \frac{3n}{4} \). That is pivot is \textit{approximately} in the middle of \(A \). Then \(\frac{n}{4} \leq |A_{\text{less}}| \leq \frac{3n}{4} \) and \(\frac{n}{4} \leq |A_{\text{greater}}| \leq \frac{3n}{4} \). If we apply recursion,

\[
T(n) \leq T\left(\frac{3n}{4}\right) + O(n)
\]

Implies \(T(n) = O(n) \)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓ’th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of A
Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
Suppose pivot is the ℓ’th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of A. Then $n/4 \leq |A_\text{less}| \leq 3n/4$ and $n/4 \leq |A_\text{greater}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓ’th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is \textit{approximately} in the middle of A.

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
Idea

- Break input A into many subarrays: L_1, \ldots, L_k.
- Find median m_i in each subarray L_i.
- Find the median x of the medians m_1, \ldots, m_k.
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

But we have to be...

More specific...

- Size of each group?
- How to find median of medians?
Choosing the pivot
A clash of medians

1. Partition array A into $\left\lfloor n/5 \right\rfloor$ lists of 5 items each.

 \[L_i = \{ A[5i + 1], \ldots, A[5i - 4] \}, \ldots, \]

 \[L_{\left\lfloor n/5 \right\rfloor} = \{ A[5 \left\lfloor n/5 \right\rfloor - 4], \ldots, A[n] \}. \]

2. For each i find median b_i of L_i using brute-force in $O(1)$ time.
 Total $O(n)$ time

3. Let $B = \{ b_1, b_2, \ldots, b_{\left\lfloor n/5 \right\rfloor} \}$

4. Find median b of B

Lemma

Median of B is an approximate median of A. That is, if b is used a pivot to partition A, then $|A_{\text{less}}| \leq 7n/10 + 6$ and $|A_{\text{greater}}| \leq 7n/10 + 6$.
Choosing the pivot
A clash of medians

1. Partition array A into $\lceil n/5 \rceil$ lists of 5 items each.

2. For each i find median b_i of L_i using brute-force in $O(1)$ time.
 Total $O(n)$ time.

3. Let $B = \{b_1, b_2, \ldots, b_{\lceil n/5 \rceil}\}$

4. Find median b of B

Lemma

Median of B is an approximate median of A. That is, if b is used a pivot to partition A, then $|A_{less}| \leq 7n/10 + 6$ and $|A_{greater}| \leq 7n/10 + 6$.

Sariel (UIUC)
CS473
Fall 2011
34 / 41
Algorithm for Selection

A storm of medians

select(A, j):

Form lists $L_1, L_2, \ldots, L_{[n/5]}$ where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
Find median b_i of each L_i using brute-force
Find median b of $B = \{b_1, b_2, \ldots, b_{[n/5]}\}$
Partition A into A_{less} and A_{greater} using b as pivot
If ($|A_{\text{less}}| = j$) return b
Else if ($|A_{\text{less}}| > j$)
 return select(A_{less}, j)
Else
 return select(A_{greater}, $j - |A_{\text{less}}|$)

How do we find median of B? Recursively!
Algorithm for Selection

A storm of medians

\textbf{select}(A, j):

- Form lists $L_1, L_2, \ldots, L_{\lfloor n/5 \rfloor}$ where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
- Find median b_i of each L_i using brute-force
- Find median b of $B = \{b_1, b_2, \ldots, b_{\lfloor n/5 \rfloor}\}$
- Partition A into A_{less} and A_{greater} using b as pivot
 - If ($|A_{\text{less}}| = j$) return b
 - Else if ($|A_{\text{less}}| > j$)
 - return \textbf{select}(A_{\text{less}}, j)
 - Else
 - return \textbf{select}(A_{\text{greater}}, j - |A_{\text{less}}|)

How do we find median of B? Recursively!
Algorithm for Selection
A storm of medians

select\((A, j)\):
Form lists \(L_1, L_2, \ldots, L_{n/5}\) where \(L_i = \{A[5i-4], \ldots, A[5i]\}\)
Find median \(b_i\) of each \(L_i\) using brute-force
Find median \(b\) of \(B = \{b_1, b_2, \ldots, b_{n/5}\}\)
Partition \(A\) into \(A_{\text{less}}\) and \(A_{\text{greater}}\) using \(b\) as pivot
If \(|A_{\text{less}}| = j\) return \(b\)
Else if \(|A_{\text{less}}| > j\)
 return select\((A_{\text{less}}, j)\)
Else
 return select\((A_{\text{greater}}, j - |A_{\text{less}}|)\)

How do we find median of \(B\)? Recursively!
Running time of deterministic median selection

A dance with recurrences

\[T(n) = T(\lceil n/5 \rceil) + \max \{ T(|A_{\text{less}}|), T(|A_{\text{greater}}|) \} + O(n) \]

From Lemma,

\[T(n) \leq T(\lfloor n/5 \rfloor) + T(\lfloor 7n/10 + 6 \rfloor) + O(n) \]

and

\[T(1) = 1 \]

Exercise: show that \(T(n) = O(n) \)
Running time of deterministic median selection
A dance with recurrences

\[T(n) = T(\lceil n/5 \rceil) + \max\{ T(|A_{\text{less}}|), T(|A_{\text{greater}}|) \} + O(n) \]

From Lemma,

\[T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6 \rceil) + O(n) \]

and

\[T(1) = 1 \]

Exercise: show that \(T(n) = O(n) \)
Running time of deterministic median selection

A dance with recurrences

\[T(n) = T\left(\lceil n/5 \rceil \right) + \max \{ T(|A_{\text{less}}|), T(|A_{\text{greater}}|) \} + O(n) \]

From Lemma,

\[T(n) \leq T\left(\lceil n/5 \rceil \right) + T\left(\lceil 7n/10 + 6 \rceil \right) + O(n) \]

and

\[T(1) = 1 \]

Exercise: show that \(T(n) = O(n) \)
Median of Medians: Proof of Lemma

Figure: Shaded elements are all greater than b

Proposition

There are at least $3n/10 - 6$ elements greater than the median of medians b.

Proof.

At least half of the $\lceil n/5 \rceil$ groups have at least 3 elements larger than b, except for last group and the group containing b. So b is less than

$$3(\lceil (1/2) \lceil n/5 \rceil \rceil - 2) \geq 3n/10 - 6$$
Proposition

There are at least $\frac{3n}{10} - 6$ elements greater than the median of medians b.

Proof.

At least half of the $\lceil \frac{n}{5} \rceil$ groups have at least 3 elements larger than b, except for last group and the group containing b. So b is less than

$$3(\lceil (1/2) \lceil n/5 \rceil \rceil - 2) \geq \frac{3n}{10} - 6$$
Proposition

There are at least \(\frac{3n}{10} - 6 \) elements greater than the median of medians \(b \).

Corollary

\[|A_{\text{less}}| \leq \frac{7n}{10} + 6. \]

Via symmetric argument,

Corollary

\[|A_{\text{greater}}| \leq \frac{7n}{10} + 6. \]
Questions to ponder

- Why did we choose lists of size 5? Will lists of size 3 work?
- Write a recurrence to analyze the algorithm’s running time if we choose a list of size k.
Median of Medians Algorithm

Due to:
“Time bounds for selection”.

How many Turing Award winners in the author list?
All except Vaughn Pratt!
Median of Medians Algorithm

Due to:
“Time bounds for selection”.

How many Turing Award winners in the author list?
All except Vaughn Pratt!
Median of Medians Algorithm

Due to:
“Time bounds for selection”.

How many Turing Award winners in the author list?
All except Vaughn Pratt!
Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- Recursive algorithms naturally lead to recurrences.
- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.