Chapter 2

DFS in Directed Graphs, Strong Connected Components, and DAGs

CS 473: Fundamental Algorithms, Fall 2011
August 25, 2011

2.0.0.1 Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an \(O(n \cdot (n + m)) \) time algorithm.
This lecture: \(O(n + m) \) time algorithm.

2.0.0.2 Graph of SCCs

Meta-graph of SCCs
Let \(S_1, S_2, \ldots S_k \) be the strong connected components (i.e., SCCs) of \(G \). The graph of SCCs is \(G^{SCC} \):

(A) Vertices are \(S_1, S_2, \ldots S_k \)
(B) There is an edge \((S_i, S_j) \) if there is some \(u \in S_i \) and \(v \in S_j \) such that \((u, v) \) is an edge in \(G \).
2.0.0.3 Reversal and SCCs

Proposition 2.0.1 For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof: Exercise.

2.0.0.4 SCCs and DAGs

Proposition 2.0.2 For any graph G, the graph G^{SCC} has no directed cycle.

Proof: If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.

2.1 Directed Acyclic Graphs

2.1.0.5 Directed Acyclic Graphs

Definition 2.1.1 A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

2.1.0.6 Sources and Sinks

Definition 2.1.2 (A) A vertex u is a source if it has no in-coming edges.

(B) A vertex u is a sink if it has no out-going edges.
2.1.0.7 Simple DAG Properties

(A) Every DAG G has at least one source and at least one sink.
(B) If G is a DAG if and only if G^{rev} is a DAG.
(C) G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

2.1.0.8 Topological Ordering/Sorting

![Graph G](image)

Definition 2.1.3 A topological ordering/topological sorting of $G = (V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition: One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

2.1.0.9 DAGs and Topological Sort

Lemma 2.1.4 A directed graph G can be topologically ordered iff it is a DAG.

Proof: \Rightarrow: Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$.
Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$.
That is... $u_1 \prec u_1$.
A contradiction (to \prec being an order).
Not possible to topologically order the vertices.

2.1.0.10 DAGs and Topological Sort

Lemma 2.1.5 A directed graph G can be topologically ordered iff it is a DAG.

Proof: [Continued] \Leftarrow: Consider the following algorithm:
(A) Pick a source u, output it.
(B) Remove u and all edges out of u.
(C) Repeat until graph is empty.
(D) Exercise: prove this gives an ordering.
Exercise: show above algorithm can be implemented in $O(m+n)$ time.

2.1.0.11 Topological Sort: An Example

Output: 1 2 3 4

2.1.0.12 Topological Sort: Another Example

2.1.0.13 DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

2.1.1 Using DFS...

2.1.1.1 ... to check for Acyclicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
(A) Compute $DFS(G)$
(B) If there is a back edge then G is not a DAG.
(C) Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition 2.1.6 G is a DAG iff there is no back-edge in $DFS(G)$.

Proposition 2.1.7 If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Proof: There are several possibilities:
(A) $[\text{pre}(v), \text{post}(v)]$ comes after $[\text{pre}(u), \text{post}(u)]$ and they are disjoint. But then, u was visited first by the DFS, if $(u, v) \in E(G)$ then DFS will visit v during the recursive call on u. But then, $\text{post}(v) < \text{post}(u)$. A contradiction.
(B) \([\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]\): impossible as \(\text{post}(v) > \text{post}(u)\).

(C) \([\text{pre}(u), \text{post}(u)] \subseteq [\text{pre}(v), \text{post}(v)]\). But then DFS visited \(v\), and then visited \(u\). Namely there is a path in \(G\) from \(v\) to \(u\). But then if \((u, v) \in E(G)\) then there would be a cycle in \(G\), and it would not be a DAG. Contradiction.

(D) No other possibility - since “lifetime” intervals of DFS are either disjoint or contained in each other.

2.1.1.2 Example

![Graph Diagram]

2.1.1.3 Back edge and Cycles

Proposition 2.1.8 \(G\) has a cycle iff there is a back-edge in DFS\((G)\).

Proof: If: \((u, v)\) is a back edge implies there is a cycle \(C\) consisting of the path from \(v\) to \(u\) in DFS search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1\).
Let \(v_i\) be first node in \(C\) visited in DFS.
All other nodes in \(C\) are descendants of \(v_i\) since they are reachable from \(v_i\).
Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.

2.1.1.4 DAGs and Partial Orders

Definition 2.1.9 A partially ordered set is a set \(S\) along with a binary relation \(\leq\) such that \(\leq\) is

1. **reflexive** \((a \leq a \text{ for all } a \in V)\),
2. **anti-symmetric** \((a \leq b \text{ and } a \neq b \text{ implies } b \not\leq a)\), and
3. **transitive** \((a \leq b \text{ and } b \leq c \text{ implies } a \leq c)\).

Example: For numbers in the plane define \((x, y) \preceq (x', y')\) iff \(x \leq x'\) and \(y \leq y'\).

Observation: A finite partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
2.1.2 What’s DAG but a sweet old fashioned notion

2.1.2.1 Who needs a DAG...

Example

(A) \(V \): set of \(n \) products (say, \(n \) different types of tablets).
(B) Want to buy one of them, so you do market research...
(C) Online reviews compare only pairs of them.
 ...Not everything compared to everything.
(D) Given this partial information:
 (A) Decide what is the best product.
 (B) Decide what is the ordering of products from best to worst.
 (C) ...

2.1.3 What DAGs got to do with it?

2.1.3.1 Or why we should care about DAGs

(A) DAGs enable us to represent partial ordering information we have about some set (very common situation in the real world).
(B) Questions about DAGs:
 (A) Is a graph \(G \) a DAG?
 \(\iff \)
 Is the partial ordering information we have so far is consistent?
 (B) Compute a topological ordering of a DAG.
 \(\iff \)
 Find an a consistent ordering that agrees with our partial information.
 (C) Find comparisons to do so DAG has a unique topological sort.
 \(\iff \)
 Which elements to compare so that we have a consistent ordering of the items.

2.2 Linear time algorithm for finding all strong connected components of a directed graph

2.2.0.2 Finding all SCCs of a Directed Graph

Problem
Given a directed graph \(G = (V, E) \), output all its strong connected components.
Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex $u \in V$ not visited yet do
find $SCC(G, u)$ the strong component of u:
Compute $rch(G, u)$ using $DFS(G, u)$
Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
$SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$
$\forall u \in SCC(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$ Is there an $O(n + m)$ time algorithm?

2.2.0.3 Structure of a Directed Graph

![Graph G]

![Graph of SCCs G^{SCC}]

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition 2.2.1 For a directed graph G, its meta-graph G^{SCC} is a DAG.

2.2.1 Linear-time Algorithm for SCCs: Ideas

2.2.1.1 Exploit structure of meta-graph...

Wishful Thinking Algorithm
(A) Let u be a vertex in a sink SCC of G^{SCC}
(B) Do $DFS(u)$ to compute $SCC(u)$
(C) Remove $SCC(u)$ and repeat

Justification
(A) $DFS(u)$ only visits vertices (and edges) in $SCC(u)$
(B) DFS done only in G (not in G^{rev}) to compute u strong connected component (SCC).
[Magic!]
(C) $DFS(u)$ takes time proportional to size of $SCC(u)$
(D) Therefore, total time $O(n + m)$!

2.2.1.2 Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $DFS(G)$ gives some information!
2.2.1.3 Post-visit times of SCCs

Definition 2.2.2 Given G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some DFS(G).

2.2.1.4 An Example

Graph G with pre-post times for DFS(A); black edges in tree

2.2.2 Graph of strong connected components

2.2.2.1 ... and post-visit times

Proposition 2.2.3 If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof: Let u be first vertex in $S \cup S'$ that is visited.
(A) If $u \in S$ then all of S' will be explored before DFS(u) completes.
(B) If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.

2.2.2.2 Topological ordering of the strong components

Corollary 2.2.4 Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}.

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort. So...
DFS(G) gives some information on topological ordering of G^{SCC}!
2.2.2.3 Finding Sources

Proposition 2.2.5 The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof: 2.2.5
(A) \(\text{post}(\text{SCC}(u)) = \text{post}(u) \)
(B) Thus, \(\text{post}(\text{SCC}(u)) \) is highest and will be output first in topological ordering of G^{SCC}.

2.2.2.4 Finding Sinks

Proposition 2.2.6 The vertex u with highest post visit time in $\text{DFS}(G^{\text{rev}})$ belongs to a sink SCC of G.

Proof: 2.2.6
(A) u belongs to source SCC of G^{rev}
(B) Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, $\text{SCC}(u)$ is sink SCC of G.

2.2.3 Linear Time Algorithm

2.2.3.1 ...for computing the strong connected components in G

```
    do \text{DFS}(G^{\text{rev}}) \text{ and sort vertices in decreasing post order.} \\
    \text{Mark all nodes as unvisited} \\
    \text{for each } u \text{ in the computed order do} \\
    \text{if } u \text{ is not visited then} \\
    \quad \text{DFS}(u) \\
    \quad \text{Let } S_u \text{ be the nodes reached by } u \\
    \quad \text{Output } S_u \text{ as a strong connected component} \\
    \quad \text{Remove } S_u \text{ from } G
```

Analysis
Running time is $O(n + m)$. (Exercise)

2.2.3.2 Linear Time Algorithm: An Example - Initial steps

Graph G:

\[\begin{array}{c}
\text{H} & \text{A} & \text{C} \\
\text{F} & \text{D} & \text{G} \\
\text{H} & \end{array} \]

Reverse graph G^{rev}:

\[\begin{array}{c}
\text{H} & \text{A} & \text{C} \\
\text{F} & \text{D} & \text{G} \\
\text{H} & \end{array} \]
2.2.4 Linear Time Algorithm: An Example

2.2.4.1 Removing connected components: 1

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

SCC computed: \{G\}

2.2.5 Linear Time Algorithm: An Example

2.2.5.1 Removing connected components: 2

Do DFS from vertex H, remove it.

SCC computed: \{G\}, \{H\}
2.2.6 Linear Time Algorithm: An Example

2.2.6.1 Removing connected components: 3

Do DFS from vertex H, remove it.

\[
\begin{array}{c}
\text{SCC computed:} \\
\{G\}, \{H\}
\end{array}
\]

\[
\begin{array}{c}
\text{SCC computed:} \\
\{G\}, \{H\}, \{F, B, E\}
\end{array}
\]

2.2.7 Linear Time Algorithm: An Example

2.2.7.1 Removing connected components: 4

Do DFS from vertex F

Remove visited vertices: \{F, B, E\}.

\[
\begin{array}{c}
\text{SCC computed:} \\
\{G\}, \{H\}, \{F, B, E\}
\end{array}
\]

2.2.8 Linear Time Algorithm: An Example

2.2.8.1 Final result
SCC computed:
\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}

Which is the correct answer!

2.2.9 Obtaining the meta-graph...

2.2.9.1 Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph \(G = (V, E)\) show that the meta-graph \(G^{SCC}\) can be obtained in \(O(m + n)\) time.

2.2.9.2 Correctness: more details

(A) let \(S_1, S_2, \ldots, S_k\) be strong components in \(G\)
(B) Strong components of \(G^{rev}\) and \(G\) are same and meta-graph of \(G\) is reverse of meta-graph of \(G^{rev}\).
(C) consider DFS\((G^{rev})\) and let \(u_1, u_2, \ldots, u_k\) be such that \(\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)\).
(D) Assume without loss of generality that \(\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)\) (renumber otherwise). Then \(S_k, S_{k-1}, \ldots, S_1\) is a topological sort of meta-graph of \(G^{rev}\) and hence \(S_1, S_2, \ldots, S_k\) is a topological sort of the meta-graph of \(G\).
(E) \(u_k\) has highest post number and DFS\((u_k)\) will explore all of \(S_k\) which is a sink component in \(G\).
(F) After \(S_k\) is removed \(u_{k-1}\) has highest post number and DFS\((u_{k-1})\) will explore all of \(S_{k-1}\) which is a sink component in remaining graph \(G - S_k\). Formal proof by induction.

2.3 An Application to make

2.3.1 make utility

2.3.1.1 make Utility [Feldman]

(A) Unix utility for automatically building large software applications
(B) A makefile specifies
 (A) Object files to be created,
 (B) Source/object files to be used in creation, and
 (C) How to create them
2.3.1.2 An Example makefile

```
project: main.o utils.o command.o
    cc -o project main.o utils.o command.o

main.o: main.c defs.h
    cc -c main.c

utils.o: utils.c defs.h command.h
    cc -c utils.c

command.o: command.c defs.h command.h
    cc -c command.c
```

2.3.1.3 makefile as a Digraph

2.3.2 Computational Problems

2.3.2.1 Computational Problems for make

(A) Is the makefile reasonable?
(B) If it is reasonable, in what order should the object files be created?
(C) If it is not reasonable, provide helpful debugging information.
(D) If some file is modified, find the fewest compilations needed to make application consistent.

2.3.2.2 Algorithms for make

(A) Is the makefile reasonable? Is G a DAG?
(B) If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
(C) If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
(D) If some file is modified, find the fewest compilations needed to make application consistent.

(A) Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
2.3.2.3 Take away Points

(A) Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.

(B) There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.

(C) DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).