DFS in Directed Graphs, Strong Connected Components, and DAGs

Lecture 2
August 25, 2011
Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an $O(n \cdot (n + m))$ time algorithm.
This lecture: $O(n + m)$ time algorithm.
Let S_1, S_2, \ldots, S_k be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}.

- Vertices are S_1, S_2, \ldots, S_k
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.
Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof.

Exercise.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.
Part I

Directed Acyclic Graphs
Definition

A directed graph G is a **directed acyclic graph** (DAG) if there is no directed cycle in G.
Sources and Sinks

Definition

- A vertex u is a **source** if it has no in-coming edges.
- A vertex u is a **sink** if it has no out-going edges.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^{rev} is a **DAG**.
- G is a **DAG** if and only if each node is in its own strong connected component.

Formal proofs: exercise.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^{rev} is a **DAG**.
- G is a **DAG** if and only each node is in its own strong connected component.

Formal proofs: exercise.
Topological Ordering/Sorting

Graph G

Topological Ordering of G

Definition

A \textit{topological ordering/topological sorting} of $G = (V, E)$ is an ordering $<$ on V such that if $(u, v) \in E$ then $u < v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

\implies: Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$.

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$!

That is... $u_1 \prec u_1$.

A contradiction (to \prec being an order).

Not possible to topologically order the vertices.
A directed graph G can be topologically ordered iff it is a DAG.

Continued.

\iff: Consider the following algorithm:

- Pick a source u, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in $O(m + n)$ time.
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: Another Example

Diagram:

- a
- b
- c
- d
- e
- f
- g
- h

Graph structure:
- a → b
- a → d
- b → d
- b → e
- d → e
- d → f
- e → g
- f → g
- h → f
- h → e

Sariel (UIUC)
CS473
Fall 2011
DAGs and Topological Sort

Note: A **DAG** G may have many different topological sorts.

Question: What is a **DAG** with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a **DAG** with the least number of distinct topological sorts for a given number n of vertices?
Using DFS...

... to check for Acyclicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute $\text{DFS}(G)$
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in $\text{DFS}(G)$.

Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Sariel (UIUC) CS473 Fall 2011 16 / 49
Using DFS...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a **DAG**? If it is, generate a topological sort.

DFS based algorithm:

- Compute **DFS**(G)
- If there is a back edge then G is not a **DAG**.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a **DAG** iff there is no back-edge in **DFS**(G).

Proposition

If G is a **DAG** and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.
Proof

Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Proof

In lecture notes...
Example
Proposition

G has a cycle iff there is a back-edge in $\text{DFS}(G)$.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS. All other nodes in C are descendants of v_i since they are reachable from v_i. Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if $i = 1$) is a back edge.
Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

If: \((u, v)\) is a back edge implies there is a cycle \(C\) consisting of the path from \(v\) to \(u\) in \(\text{DFS}\) search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1\). Let \(v_i\) be first node in \(C\) visited in \(\text{DFS}\). All other nodes in \(C\) are descendants of \(v_i\) since they are reachable from \(v_i\). Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
A **partially ordered set** is a set S along with a binary relation \leq such that \leq is

1. **reflexive** ($a \leq a$ for all $a \in V$),
2. **anti-symmetric** ($a \leq b$ and $a \neq b$ implies $b \nleq a$), and
3. **transitive** ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a **DAG**. (No equal elements.)

Observation: A topological sort of a **DAG** corresponds to a complete (or total) ordering of the underlying partial order.
A **partially ordered set** is a set S along with a binary relation \leq such that \leq is

1. **reflexive** ($a \leq a$ for all $a \in V$),
2. **anti-symmetric** ($a \leq b$ and $a \neq b$ implies $b \not\leq a$), and
3. **transitive** ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
A partially ordered set is a set S along with a binary relation \leq such that \leq is

1. **reflexive** ($a \leq a$ for all $a \in V$),
2. **anti-symmetric** ($a \leq b$ and $a \neq b$ implies $b \not\leq a$), and
3. **transitive** ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
What’s DAG but a sweet old fashioned notion
Who needs a DAG...

Example

\(V \): set of \(n \) products (say, \(n \) different types of tablets).

- Want to buy one of them, so you do market research...
- Online reviews compare only pairs of them.
 ...Not everything compared to everything.
- Given this partial information:
 - Decide what is the best product.
 - Decide what is the ordering of products from best to worst.
 - ...
What DAGs got to do with it?
Or why we should care about DAGs

- **DAGs** enable us to represent partial ordering information we have about some set (very common situation in the real world).

Questions about **DAGs**:

- Is a graph G a **DAG**?
 \[\iff \]
 Is the partial ordering information we have so far is consistent?

- Compute a topological ordering of a **DAG**.
 \[\iff \]
 Find an a consistent ordering that agrees with our partial information.

- Find comparisons to do so **DAG** has a unique topological sort.
 \[\iff \]
 Which elements to compare so that we have a consistent ordering of the items.
Part II

Linear time algorithm for finding all strong connected components of a directed graph
Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex $u \in V$ not visited yet do

find $SCC(G, u)$ the strong component of u:

Compute $rch(G, u)$ using $DFS(G, u)$

Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$

$SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$

$\forall u \in SCC(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex $u \in V$ not visited yet do

find SCC(G, u) the strong component of u:

Compute $rch(G, u)$ using $DFS(G, u)$
Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$

$SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$

$\forall u \in SCC(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

- Mark all vertices in V as not visited.
- For each vertex $u \in V$ not visited yet do
 - Find $SCC(G, u)$, the strong component of u:
 - Compute $rch(G, u)$ using $DFS(G, u)$
 - Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
 - $SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$
 - Mark u as visited.

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Structure of a Directed Graph

Graph G

Graph of SCCs G^{SCC}

Reminder

G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do $\text{DFS}(u)$ to compute $\text{SCC}(u)$
- Remove $\text{SCC}(u)$ and repeat

Justification

- $\text{DFS}(u)$ only visits vertices (and edges) in $\text{SCC}(u)$
- DFS done only in G (not in G^{rev}) to compute u strong connected component (SCC). [Magic!]
- $\text{DFS}(u)$ takes time proportional to size of $\text{SCC}(u)$
- Therefore, total time $O(n + m)$!
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Post-visit times of SCCs

Definition

Given G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some $\text{DFS}(G)$.
An Example

Graph G

Graph with pre-post times for $\text{DFS}(A)$; black edges in tree

Figure: G^{SCC} with post times
Graph of strong connected components
... and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $post(S) > post(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $DFS(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $post(u) > post(u')$.
Graph of strong connected components

... and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Corollary

Ordering $\text{SCC}s$ in decreasing order of $\text{post}(S)$ gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

$\text{DFS}(G)$ gives some information on topological ordering of G^{SCC}!
Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of \(\text{post}(S) \) gives a topological ordering of \(G^{\text{SCC}} \).

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

\(\text{DFS}(G) \) gives some information on topological ordering of \(G^{\text{SCC}} \)!
Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}.

Proof.

- $post(SCC(u)) = post(u)$
- Thus, $post(SCC(u))$ is highest and will be output first in topological ordering of G^{SCC}.
The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}.

Proof.

- $\text{post}(\text{SCC}(u)) = \text{post}(u)$
- Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.
Finding Sinks

Proposition

The vertex u with highest post visit time in $\text{DFS}(G^{\text{rev}})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.
Finding Sinks

Proposition

The vertex u with highest post visit time in $\text{DFS}(G^{\text{rev}})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, $\text{SCC}(u)$ is sink SCC of G.
Linear Time Algorithm

...for computing the strong connected components in G

do \(\text{DFS}(G^{\text{rev}}) \) and sort vertices in decreasing post order.
Mark all nodes as unvisited

for each \(u \) in the computed order **do**
 if \(u \) is not visited **then**
 \(\text{DFS}(u) \)
 Let \(S_u \) be the nodes reached by \(u \)
 Output \(S_u \) as a strong connected component
 Remove \(S_u \) from \(G \)

Analysis

Running time is \(O(n + m) \). (Exercise)
Linear Time Algorithm: An Example - Initial steps

Graph G:

Reverse graph G^{rev}:

DFS of reverse graph:

Pre/Post DFS numbering of reverse graph:
Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

$\text{SCC} \text{ computed: } \{G\}$
Linear Time Algorithm: An Example

Removing connected components: 2

Do **DFS** from vertex G
remove it.

Do **DFS** from vertex H, remove it.

SCC computed:

\{ G \}

\{ G \}, \{ H \}
Linear Time Algorithm: An Example

Removing connected components: 3

Do **DFS** from vertex **H**, remove it.

SSCC computed:
\{G\}, \{H\}

Do **DFS** from vertex **F**
Remove visited vertices: \{F, B, E\}.

SSCC computed:
\{G\}, \{H\}, \{F, B, E\}
Linear Time Algorithm: An Example

Removing connected components: 4

Do DFS from vertex F
Remove visited vertices: \{F, B, E\}.

SCC computed: \{G\}, \{H\}, \{F, B, E\}

Do DFS from vertex A
Remove visited vertices: \{A, C, D\}.

SCC computed: \{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}
SCC computed:
{G}, {H}, {F, B, E}, {A, C, D}
Which is the correct answer!
Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph $G = (V, E)$ show that the meta-graph G^{SCC} can be obtained in $O(m + n)$ time.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $\text{DFS}(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Part III

An Application to make
make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them
An Example makefile

project: main.o utils.o command.o
 cc -o project main.o utils.o command.o

main.o: main.c defs.h
 cc -c main.c
utils.o: utils.c defs.h command.h
 cc -c utils.c
command.o: command.c defs.h command.h
 cc -c command.c
makefile as a Digraph

main.c
utils.c
defs.h
command.h
command.c

main.o
utils.o
command.o
project
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).