CS 473: Fundamental Algorithms, Fall 2011

Homework 7 (due Monday, 23:55:00, October 24, 2011)
Collaboration Policy \& submission guidelines: See homework 1.
Each student individually have to also do quiz 7 online.
Version: 1.1

1. (30 PTS.) $3 / 4$-tree.

Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well as any internal node, has exactly 4 children. Each leaf has a boolean value associated with it. An internal node returns 1 if and only at least three of its children evaluate to 1 . The evaluation problem consists of determining the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to read. This three has $n=4^{h}$ leafs.
(A) (10 PTs.) Consider a tree of height $h=1$. Provide a randomized algorithm that in expectation (independent of the values stored in the 4 leafs!) evaluates strictly less than 4 leafs.
(B) (20 PTs.) Extend the algorithm from (A) to evaluating a tree of larger depth. Describe your new algorithm, and prove that the expected number of leaves read by your algorithm on any instance is at most $n^{0.954}$.
(For fun, you can try and prove that any deterministic algorithm has to read all leaves of the tree.)
2. (30 PTS.) Concentrate.

Consider a full binary tree of height h. You start from the root, and at every stage you flip a coin and go the left subtree with probability half (if you get a head), and to the right subtree with probability half (if you get a tail). You arrive to a leaf, and let assume you took k turns to the left (and $h-k$ turns to the right) traversing from the root to this leaf. Then the value written in this leaf is α^{k}, where $\alpha<1$ is some parameter.
Let X_{h} be the random variable that is the returned value.
(A) (10 PTs.) Prove that $\mathbf{E}\left[X_{h}\right]=\left(\frac{1+\alpha}{2}\right)^{h}$ by stating a recursive formula on this value, and solving this recurrence.
(B) (10 PTs.) Consider flipping a fair coin h times independently and interpret them as a path in the above tree. Let \mathcal{E} be the event that we get at most $h / 4$ heads in these coin flips. Argue that \mathcal{E} happens if and only if $X_{h} \geq \alpha^{h / 4}$.
(C) (10 PTs.) Markov's inequality states that for a positive random variable X we have that $\operatorname{Pr}[X \geq t] \leq \mathbf{E}[X] / t$. Let Y be the number of heads when flipping a fair coin h times. Using Markov's inequality, (A) and (B) prove that

$$
\operatorname{Pr}[\text { Out of } h \text { coin flips getting at most } h / 4 \text { heads }] \leq\left(\frac{1+\alpha}{2 \alpha^{1 / 4}}\right)^{h}
$$

In particular, by picking the appropriate value of α, prove that

$$
\operatorname{Pr}[\text { Out of } h \text { coin flips getting at most } h / 4 \text { heads }] \leq 0.88^{h} .
$$

What is your value of α ?
3. (40 PTS.) Matrix search.

You are given a matrix M of size $n \times n$. You can read an any entry of the matrix in constant time. Furthermore, assume that $M[i][j]<M[i+1][j]$ and $M[i][j]<M[i][j+1]$ for any i and j. (You can assume all the values in the matrix are distinct.)
(a) (5 PTs.) Given an interval $I=[\alpha, \beta]$, we would like to figure out all the numbers in the matrix that fall in I. Given a row index i, describe how to compute, in $O(\log n)$ time, the two indices l_{i} and r_{i} such that all the numbers in the row $M[i]$ that fall in I are $M[i]\left[l_{i} \ldots r_{i}\right]$.
(b) (5 PTs.) Compute $l_{1}, r_{1}, l_{2}, r_{2}, \ldots, l_{n}, r_{n}$ given $I=[\alpha, \beta]$ in linear time (i.e., $O(n)$ time). (Hint: Draw the matrix and think about how the values of l_{i} and r_{i} change between the i th row and $(i+1)$ th row, $)$
(c) (5 PTS.) Given a value τ, show how to compute the number of element in M that are smaller than τ in $O(n)$ time.
(d) (25 PTS.) Given M and a number k, given an algorithm with expected running time $O(n \log n)$ that outputs the k th smallest element in M. Prove the correctness and running time of your algorithm.
Hint: Think about QuickSelect and how adapt it to this problem.

