CS 473: Fundamental Algorithms, Fall 2011

Homework 5 (due Monday, 23:55:00, October 10, 2011)
Collaboration Policy \& submission guidelines: See homework 1.
Each student individually have to also do quiz 5 online.
Version: $\mathbf{1 . 1 1}$

1. (40 PTS.) Snakes on a tree.

Let $G=(V, E)$ be an undirected graph with weights on the edges. That is for an edge $u v \in E$, we have a weight $w(u v)$ associated with $u v$. A k-snake in a graph is a simple path with exactly k edges in it. Two k-snakes are disjoint if they do not share any vertex. A collection M of k-snakes is a k-snake packing if all pairs of snakes of M are disjoint (for $k=1$ the set M is a matching in the graph). The total weight of a k-snake packing is the total weight of the edges used by the snakes.
We are interested in the problem of computing the maximum weight k-snake packing in G. In general, this problem seems hard. Fortunately for the tree case this is much easier.
Describe an efficient algorithm (i.e., provide pseudo-code, etc), as fast as possible, for computing the maximum weight k-snake packing when G is a rooted tree. Your algorithm should be recursive and use memoization to achieve efficiency. (You can not assume G is a binary tree - a node might have arbitrary number of children.) What is the running time of your algorithm as function of $n=|V(G)|$ and k ?)
For example, the following shows a tree with a possible 3 -snake packing.

2. (30 PTs.) All your internet base are belong to us.

You are given a road somewhere out there. The road is straight, and there are n farm houses along it. You are given the distance x_{i} of the i th house from the beginning of the road. (You can assume $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.) You need to place k stations along the road, such that you connect every house to one of the stations. The price of connecting a station to a house is their distance.
(A) Prove that if n is odd and $k=1$ then the optimal placement for the single station is at $x_{(n-1) / 2+1}$.
(B) Prove that if n is even and $k=1$ then the optimal placement for the single station is at either $x_{(n) / 2}$ or $x_{(n) / 2+1}$ (and both locations have exactly the same price).
(C) Describe an algorithm, as fast as possible, just that given x_{1}, \ldots, x_{n}, and an integer k, outputs the locations of the best placements for the k stations (sorted by increasing order), and the price of wiring all the houses to these stations. How fast is your algorithm? (specifically, what is the running time if $k=O(1)$ or $k=n / 2$.)
3. (30 PTS.) And you thought this was a theory class.

Implement your algorithm from the previous part in C or $\mathrm{C}++$. The input to your program will be

(Given on the standard input.) To simplify things you can assume all these numbers are integers. The output should be:
(A) Price of the solution (on its own line).
(B) The location of the k stations (each on its own line) - in increasing order.
(C) For each house, the index of the station (out of the k stations) it is connected to (each on its own line).
You need to submit a single C (or $\mathrm{C}++$) file that contains your program (which must compile on its own and run efficiently). We will provide several input/output examples on the class webpage. We would also provide some help code to implement memoization. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ We will use MOSS to verify that programs are not copied...

