
CS 473: Fundamental Algorithms, Fall 2011
Homework 4 (due Monday, 23:55:00, October 3, 2011)

Collaboration Policy & submission guidelines: See homework 1.
Each student individually have to also do quiz 4 online.

Version: 1.2

1. (30 pts.) Saying goodbye to Bellman-Ford.

You are given a directed graph G with (possibly negative) weights on the edges, and a source
vertex s.

(A) (20 pts.) Show how to modify Bellman-Ford so that it outputs a negative cycle it had
found in the graph reachable from the source s. Prove that your algorithm indeed
outputs a negative cycle in the graph.

(B) (10 pts.) Describe an algorithm that computes for all the vertices in the given graph
their distance from s.
Notice, that your algorithm needs to correctly handle vertices in G whose distance from
s is −∞ (there is a walk from s to such a vertex that includes a negative cycle).
For full credit, the running time of your algorithm must be O(mn). (You do not have to
use (A) to do this part.)

2. (40 pts.) Packing trees.

You are given a rooted undirected tree T with n vertices (let r
denote the root). (The tree is not necessarily a binary tree.) Every
vertex v of T has a positive weight w(v) associated with it. A path
is monotone if the distance of its vertices from the root strictly
increases.
Describe an algorithm, as fast as possible, that picks a subset of
the vertices of the graph, such that no monotone path of length 5
contains more than three vertices in the set picked. Furthermore,
the total weight of the computed set of vertices should be largest
among all such sets. The figure on the right shows one legal solution
picking 11 out of the 14 vertices of this tree (it is of course not
necessarily the heaviest solution possible).

3. (30 pts.) Some data-structure magic.

(A) (10 pts.) Consider a data-structure for implementing balanced binary tree (say AVL-
tree1). We would like to modify it such that it supports inserting pairs (x, y). Here x is
the key, and y is some associated value. Describe how to modify such a data-structure,
such that it allows insertions, deletions and queries. The queries supported are:

(I) Given x′, return the pair (x, y) stored in the tree with maximum value of x, such
that x ≤ x′,

1If you do not know what AVL tree is – you need to learn it on your own – this is part of the prerequisites for the
course.

1



(II) Given a query interval [α, β] it returns the numbers of pairs (x, y) stored in the
data-structure such that x ∈ [α, β]. Formally, it returns

∑
(x,y)∈D,x∈[α,β] 1, where

D is the set of pairs currently stored in the data-structure.
(III) Given a query interval [α, β] it returns

∑
(x,y)∈D,x∈[α,β]

y.

(IV) Given a query interval [α, β] it returns max
(x,y)∈D,x∈[α,β]

y.

All these operations should take O(log n) time.

Hint: For the modification, figure out what you need to store in each node of the tree, and
describe how to maintain this information for rotations in this tree (and other situations
where updates happen). As for the queries, consider the search paths in the tree from
the root to the values α and β. (Try to keep your solution short – describe only the
necessary modifications.)

(B) (10 pts.) You are given a sequence x1, x2, . . . , xn of n numbers. You had already
computed pairs (x1, y1), . . . , (xi, yi), where yk is the length of the longest increasing
subsequence in the given sequence that ends in xk (and includes it). Furthermore, you
have stored all these pairs in the data-structure D of (A). Describe how to compute yi+1

in logarithmic time given D and using (A).
As a concrete example, if the sequence is 17, 1, 7, 5, 6, 4, 2, 8, 3 then we will have:

x1 = 17 x2 = 1 x3 = 7 x4 = 5 x5 = 6 x6 = 4 x7 = 2 x8 = 8 x9 = 3

y1 = 1 y2 = 1 y3 = 2 y4 = 2 y5 = 3 y6 = 2 y7 = 2 y8 = 4 y9 =???

(C) (10 pts.) Given a sequence x1, . . . , xn, describe how to compute the longest increasing
subsequence in this sequence in O(n log n) time, using (A) and (B).

2


