
CS 473: Fundamental Algorithms, Fall 2011
Homework 1 (due Tuesday, 23:55:00, September 6, 2011)

This homework contains three problems. Read the instructions for submitting the home-
work on the course webpage. Read the course policies before starting the homework.

Collaboration Policy: For this homework, Problems 1–3 can be worked in groups of up to three
students.

Each student individually have to also do quiz 1 online.

Submission guidelines:

For every group of students, one and only one student have to upload the solutions to the
homework to the class moodle page. Together with the solutions to the three questions, the
submitting student of the group also have to upload a text file that contains the netid of the
submitting students. Specifically, this text file should be named group.txt. Each student netid
(and nothing else) would be written as is on each line of this text file. As such, an example such
file might look like:

sariel

jeff7847

mogibogi723

Version: 2.11

1. (45 pts.) Like a bridge over undirected graph, I will lay me down.

b c d e

f g
h

i

j k
l

p

q r s t

Given a connected undirected graph G = (V,E), an edge e = (u, v)
is called a bridge , or a cut-edge , if removing e disconnects the
graph into two pieces, one containing u and the other containing
v. A vertex u is called a separating vertex , or cut-vertex , if
removing u leaves the graph into two or more disconnected pieces;
note that u does not count as one of the pieces in this definition.
Your goal in this problem is to develop a linear time algorithm to
find all the bridges of a given graph using DFS. Let T be a DFS
tree of G (note that it is rooted at the first node from which DFS
is called). For a node v we will use the notation Tv to denote the sub-tree of T hanging at v
(Tv includes v).

(A) (2 pts.) In the graph shown above, identify all the bridges and cut-vertices (i.e., list all
the bridge edges and cut vertices).

(B) (3 pts.) Prove that any bridge of G has to be a tree edge in the tree generated by every
DFS(G). Recall the property of DFS in undirected graphs. Why does this show that

1



the maximum number of bridges is n− 1? What is a graph that achieves this bound?
(C) (5 pts.) Suppose e = (u, v) is a tree-edge in DFS(G) with pre(u) < pre(v) (that means

u is the ancestor of v). Prove that e is a bridge if and only if (need to prove both
directions) there is no edge from any node in Tv to either u or any of its ancestors.

(D) (5 pts.) For each node u define:

low(u) = min

{
pre(u)
pre(w) where (v, w) is a back edge for some descendant v of u.

Give a linear time algorithm that computes the low value for all nodes by adapting
DFS(G). Give the altered pseudo-code of DFS(G) to do this. There is no need to prove
that your code is correct.

(E) (5 pts.) Give a linear time algorithm that identifies all the bridges of G using the low
values and the steps above. Specifically, provide pseudo-code for a linear time algorithm
to do so. There is no need to prove that your code is correct.

(F) (5 pts.) Prove that if a graph G contains a bridge, then in any orientation of its edges,
the resulting directed graph is not strongly connected.

(G) (20 pts.) Provide a linear time algorithm that given an undirected graph G, orient its
edges such that the resulting directed graph is strongly connected. If no such orientation
is possible, the algorithm outputs “not possible:”. (Hint: Think how to use (F).)

(It is instructive to run DFS(G) on the example graph and compute the pre values and the
lowvalues for each node.)

2. (35 pts.) A party in Vogsphere.

In Vogsphere there are n families. Every family has two children, and you have to organize a
party inviting one child from each family (you can not invite both children in a family, because
they would start fighting and just ruin the party for everybody). If you fail to invite a child
from each family, the skipped family is going to get very upset, and read poetry to you, which
is supposedly fatal1. For every child, there is a list of its friends (i.e., other children) that
must also be invited to the party (otherwise they would not come). Your task is to decide if
such a party can be organized.

For social reasons that are not well understood yet, for any two children x and y,
if x insist on inviting y, then the sibling of y insist on inviting the sibling of x.

(A) (10 pts.) Build a graph with 2n nodes (one for each child). Put an edge (x, y) if x
would come only if you also invite y. Consider the resulting graph G. Show, that if two
children of the same family are in the same strong connected component of G, then there
is no feasible party.

(B) (15 pts.) Show (or even better, prove) the converse of (A); that is, show that if no strong
connected component in G contains two children from the same family, then there are
n invitations that would result in a valid party. (Hint: Consider the graph of connected
components and consider its sink. This sink corresponds to a set of children – invite
them, do some clean up [i.e., delete children that can no longer be invited], and repeat).

1See http://en.wikipedia.org/wiki/Vogon#Poetry

2



(C) (10 pts.) Provide a linear time algorithm (in n and m [the number of edges in the graph
G]) to compute if there is a feasible party, and if so computes the set of invitations to
this party.

3. (20 pts.) Almost strongly connected.

You are given a DAG G that has the property that one can flip one edge in G and it becomes
a strongly connected graph.

(a) (10 pts.) Prove that there can not be two sources in the graph G. Similarly, show that
there can not be two sinks in G.

(b) (5 pts.) Give a concrete description of the edge that must be flipped to get a strongly
connected graph.

(c) (5 pts.) Give a linear time algorithm (i.e., O(n+m)) for computing which edge to flip
in G to get the strongly connected graph.

3


