
CS 473: Fundamental Algorithms, Fall 2011

Discussion 15

December 6, 2011

15.1 Recurrences.

Solve the following recurrences:

(A) T (n) = T (bn/15c) + T (bn/10c) + 2T (bn/6c) + n
(B) T (n) = T (n− 1) + 2n− 1, where T (0) = 0

15.2 Graphs.

Let G = (V,E) be an unweighted, undirected graph and let u and v be two vertices of
G. Describe a linear time algorithm to find the number of shortest paths from u to v.
Note that we only want the number of paths as there may be an exponential number
of them. Give an example graph with an exponential number of (u, v)-paths.

15.3 Dynamic Programming.

The spring ROTC picnic at UIUC has fallen on a rainy day. The ranking officer decides
to postpone the picnic and must notify everyone by phone. Here is the mechanism she
uses to do this.

Each ROTC person on campus except the ranking officer reports to a unique superior
officer. Thus the reporting hierarchy can be described by a tree T , rooted at the
ranking officer, in which each other node v has a parent node u equal to his or her
superior officer. Conversely, we will call v a direct subordinate of u. See the figure in
which A is the ranking officer, B and D are direct subordinates of A, and C is the
direct subordinate of B.

To notify everyone of the postponement, the ranking officer first calls each of her direct
subordinates, one at a time. As soon as each subordinate gets the phone call, he or she
must notify each of his or her direct subordinates, one at a time. The process continues
this way until everyone has been notified. Note that each person in this process can
only call direct subordinates on the phone; for example, in the figure, A would not be
allowed to call C.

We can picture this process as being divided into rounds. In one round, each person who
has already learned of the postponement can call one of his or her direct subordinates
on the phone. The number of rounds it takes for everyone to be notified depends on
the sequence in which each person calls their direct subordinates. For example, in the
figure, it will take only two rounds if A starts by calling B, but it will take three rounds
if A starts by calling D.

Give an efficient algorithm that determines the minimum number of rounds needed for
everyone to be notified.

1



15.4 Flow Reduction.

You’re organizing the First Annual UIUC Computer Science 72-Hour Dance Exchange,
to be held all day Friday, Saturday, and Sunday. Several 30-minute sets of music will
be played during the event, and a large number of DJs have applied to perform. You
need to hire DJs according to the following constraints:

• Exactly k sets of music must be played each day, and thus 3k sets altogether.

• Each set must be played by a single DJ in a consistent music genre (ambient,
dubstep, trip-hop, J-pop, etc.).

• Each genre must be played at most once per day.

• Each candidate DJ has given you a list of genres they are willing to play.

• Each DJ can play at most three sets during the entire event.

Suppose there are n candidate DJs and g different musical genres available. Describe
and analyze an efficient algorithm that either assigns a DJ and a genre to each of the
3k sets, or correctly reports that no such assignment is possible.

15.5 Pebbling Problem.

Pebbling is a solitaire game played on an undirected graph G, where each vertex has
zero or more pebbles. A single pebbling move consists of removing two pebbles from a
vertex v and adding one pebble to an arbitrary neighbor of v. (Obviously, the vertex
v must have at least two pebbles before the move.) The PebbleDestruction problem
asks, given a graph G = (V,E) and a pebble count p(v) for each vertex v, whether
there is a sequence of pebbling moves that removes all but one pebble. Prove that
PebbleDestruction is NP-complete.

15.6 3-Dimensional Matching Problem.

We begin by discussing the 3-Dimensional Matching problem, which can be motivated
as a harder version of the Bipartite Matching problem. The Bipartite Matching prob-
lem can be viewed in the following way: We are given two sets X and Y , each of size
n, and a set P of pairs drawn from X × Y . The question is: Does there exist a set of
n pairs in P so that each element in X ∪ Y is contained in exactly one of these pairs?

2



Bipartite Matching is a problem we know how to solve in polynomial time, but things
get much more complicated we move from ordered pairs to ordered triples. Consider
the following 3-Dimensional Matching problem:

Given disjoint sets X, Y , Z, each of size n, and given a set T ⊆ X×Y ×Z, does there
exist a set of n triples in T so that each element of X ∪ Y ∪ Z is contained in exactly
one of these triples?

Such a triple is called a perfect three-dimensional matching. Show that 3-Dimensional
Matching is NP-complete by reducing from 3-SAT.

15.7 Shortest Paths Reduction.

Consider a system of m linear inequalities over n variables {x1, · · · , xn}. The kth
inequality is in the form xk1 − xk2 ≤ tk for 1 ≤ k1, k2 ≤ n and constant tk (could be
positive, zero or negative). The task is to present an algorithm that finds a solution of
this system or indicates that the system has no solution.

(A) Build a graph G on vertex set {v1, · · · , vn, s}. Put a directed edge from s to every
vi with weight 0. If the k-th inequality is xk1 − xk2 ≤ tk, then put a directed
edge from vk2 to vk1 in the graph with weight tk. Let d(s, vi) be the length of
the shortest path from s to vi in the graph G. Are the values d(s, vi) guaranteed
to exist? What algorithm could we use to compute all the values d(s, vi) if they
exist?
Assuming that all d(s, vi) exist, prove that xi = d(s, vi) for 1 ≤ i ≤ n, is a solution
to our linear system.

(B) Now assume that at least one of the values d(s, vi) does not exist. Prove that the
linear system has no solution.

3


