CS 473: Fundamental Algorithms, Fall 2011

Discussion 13
November 15, 2011

13.1 FroM SET COVER TO MONOTONE SAT.

Consider an instance I of a CNF formula specified by clauses C, Cs, ..., Cy over a set
of boolean variables x1, xs, ..., x,. We say that [is monotone if each term in each
clause consists of a nonnegated variable i.e. each term is equal to z;, for some ¢, rather
than Z; (i.e., no negations are allowed). They could be easily satisfied by setting each
variable to 1. For example, suppose we have three clauses (1 V x2), (x1 Vx3), (x3V x2).
These could be satisfied by setting all three variables to 1, or by setting x; and x5 to
1 and x5 to 0.

Given a monotone instance of CNF formula, together with a number £, the problem
Monotone Satisfiability asks whether there is a satisfying assignment for the instance in
which at most k variables are set to 1.

The Set Cover problem asks, given a collection F of subsets Sy, Sy, ..., S, of a ground
set U = {1,...,n}, what is the minimum number of sets of F whose union is U?

(A) Given a decision instance of Set Cover (i.e., given S, F, and a k — is there a cover
of U by k subsets?), show a Karp reduction to Monotone Satisfiability.

(B) Show how to solve the optimization version of Set Cover (i.e., you are given U, F,
and you have to compute the minimum number of sets of F that cover the ground
set) by an algorithm performing a polynomial number of calls to a solver of Mono-
tone Satisfiability.

13.2 BuiLDING 3CNF FORMULAS.

(A) Consider the following boolean function f and g defined by a truth table. Generate
a 3CNF formulas that computes these two functions.

|y | z| flo,y,2) |y |z g(xy z2)
0]00 1 0/00 1
001 1 001 1
010 1 0[1]0 0
011 1 011 1
1100 1 110]0 1
1101 0 1101 0
1[1]0 1 111]0 1
1111 1 1111 1
(i) (ii)

13.3

13.4

(B) Given an arbitrary boolean formula f(z,y, z), describe how to convert it into an
equivalent 3CNF formula.

(C) Argue that any boolean formula with n variables can be converted into a n-CNF
formula (i.e., CNF formula where every clause has at most n variables).

REDUCING FROM 3-COLORING TO SAT.

SAT is a decision problem that asks whether a given boolean formula in conjunctive
normal form (CNF) has an assignment that makes the formula true. The 3-Coloring
problem is a decision problem that asks given an undirected graph G, can its vertices
be colored with three colors, so that every edge touches vertices with two different
colors? Give a polynomial time reduction from 3-coloring to 3SAT.

Comment: Observe that to prove the hardness of 3-Coloring we showed the reduction in the
other direction.
TURNING 3SAT INTO AN OPTIMIZATION PROBLEM.
Consider the optimization problem MAX SAT.
Problem: MAX SAT

Instance: Set U of variables, a collection C' of disjunctive clauses of
literals where a literal is a variable or a negated variable in U.
Question: Find an assignment that maximized the number of
clauses of C' that are being satisfied.

(A) Prove that MAX SAT is NP-HARD.

(B) Prove that if each clause has exactly three literals, and we randomly assign to the
variables values 0 or 1, then the expected number of satisfied clauses is (7/8)M,
where M = |C/|.

(C) Show that for any instance of MAX SAT, where each clause has exactly three
different literals, there exists an assignment that satisfies at least 7/8 of the clauses.

(D) Let (U,C) be an instance of MAX SAT such that each clause has > 10 - log, n
distinct variables, where n is the number of clauses. Prove that there exists
a satisfying assignment; namely, there exists an assignment that satisfy all the
clauses of C.
Comment: As such, SAT is easy if all the clauses are large. It is also easy (see the
2SAT problem) if every clause has two variables. Specifically, as the clauses of a SAT
become bigger, the problem becomes easier. As such, intuitively 3SAT, where every
clause has exactly three variables, is the hardest version of this problem.

13.5 SOLVE 2SAT IN LINEAR TIME.

In the 2SAT problem, you are given a set of clauses, where each clause is the disjunction
(OR) of two literals (a literal is a boolean variable or the negation of a Boolean variable).
You are looking for a way to assign a value true or false to each of the variables so
that all clauses are satisfied—that is, there is at least one true literal in each clause.

(A)

(F)

As an example, here’s an instance of 2SAT:
(iL‘l \/52) A (El \/Tg) A\ (iL‘l V .1'2) A (Eg V $4> A\ (fl V .1'4)

This instance has a satisfying assignment: set x1, o, 3, and x4 to true, false,

false, and true, respectively.

(a) Are there other satisfying truth assignments of this 2SAT formula? If so, find
them all.

(b) Give an instance of 2SAT with four variables, and with no satisfying assign-
ment.

We can solve 2SAT efficiently by reducing it to the problem of finding the strongly

connected components of a directed graph. Given an instance I of 2SAT with n

variables and m clauses, construct a directed graph G; = (V, E) as follows.

e (1 has 2n nodes, one for each variable and its negation.

e G has 2m edges: for each clause (aV) of I (where «, 3 are literals), G has
an edge from the negation of o to , and one from the negation of g to a.

Note that the clause (« V) is equivalent to either of the implications @ = 3 or
B = «. In this sense, G records all implications in I.

Carry out this construction for the instance of 2SAT given above, and for the
instance you constructed in (b).

Show that if G; has a strongly connected component containing both x and 7 for
some variable x, then I has no satisfying assignment.

Now show the converse of (d): namely, that if none of G;’s strongly connected
components contain both a literal and its negation, then the instance I must be
satisfiable. (Hint: Assign values to the variables as follows: repeatedly pick a sink
strongly connected component of G;. Assign value true to all literals in the sink,
assign false to their negations, and delete all of these. Show that this ends up
discovering a satisfying assignment.)

Conclude that there is a linear-time algorithm for solving 2SAT.

