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11.1 Find your graph.

Let k be a relatively small number (say, equal to 10 or 20). A k-graph is an undirected
graph having k vertices (numbered explicitly as 1 to k). You want to build a data-
structure such that you can do the following two operations:

(A) Store an incoming k-graph in the data-structure.
(B) Given a k-graph G, the data-structure retrieves all the k-graphs stored in the

data-structures that are identical (as far as the edges are concerned).

Describe how to build such a data-structure that performs the insertion operation in
O(k2) time, and can answer a query in O(k2 + m) time, where m is the number of
graphs returned.

(A) Describe such a data-structure that does not use hashing.
(B) Describe such a data-structure that uses hashing. Describe the hashing function

explicitly. What is the probability for two distinct graphs to collide under your
hash function?

11.2 Rearrangeable matrices.

Let M be an n× n matrix with each entry equal to either 0 or 1. Let mij denote the
entry in row i and column j. A diagonal entry is one of the form mii for some i.

Swapping rows i and j of the matrix M denotes the following action: we swap the
values of mik and mjk, for k = 1, . . . , n. Swapping two columns is defined analogously.

We say that M is rearrangeable if it is possible to swap some of the pairs of rows
and some of the pairs of columns (in nay sequence) so that after all the swapping, all
the diagonal entries of M are equal to 1.

(a) Give an example of a matrix M that is not rearrangeable, but for which at least
one entry in each row and each column is equal to 1.

(b) Give a polynomial-time algorithm that determines whether a matrix M with 0-1
entries is rearrangeable.

11.3 The Problem with Change.

Consider the problem of making change for n cents using the least number of coins.

(a) Describe a greedy algorithm to make change consisting of quarters, dimes, nickels,
and pennies. Prove that your algorithm yields an optimal solution.
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(b) Suppose that the available coins have the values c0, c1, ..., ck for some integers
c > 1 and k ≥ 1. Show that the greedy algorithm always yields an optimal
solution.

(c) Give a set of 4 coin values for which the greedy algorithm does not yield an
optimal solution, show why.

(d) Give a dynamic programming algorithm that yields an optimal solution for an
arbitrary set of coin values.

11.4 Small Changes to MST.

Let G be a connected, undirected graph where each edge e has weight w(e). You may
assume all edge weights are positive and distinct. Consider a Minimum Spanning Tree
T of G. Suppose that we decrease one of the edges not in T to a new distinct, positive
value. How could you find the MST in the modified graph?

11.5 Flow Facts?

Which of the following statements are true and which are false? Justify your answer.

(a) If all directed edges in a network have distinct capacities, then there is a unique
max flow.

(b) Consider a graph G = (V,E). Now, for each edge e = (u, v) with capacity c(e),
we will add an edge e′ = (v, u) in the opposite direction with the same capacity
c(e). This alteration to G will not change the value of the max flow.

11.6 Randomized Max Cut.

Consider the Max Cut problem: given an undirected graph G = (V,E) and weight
function w : E → Z+, find a cut (A,B) such that the value of the weights across
the cut is maximized. We will now analyze a simple randomized algorithm for this
problem:

For each v, independently put it in A with probability 1/2. Output the cut (A, V \A).

(a) What is the probability of edge (u, v) being in the cut?

(b) What is the expected weight of the edges in the cut?

(c) What is the maximum weight of any cut?
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