
CS 473: Fundamental Algorithms, Fall 2011

Discussion 9

October 18, 2011

9.1 Choosing balls.

Given n balls and k special balls, consider a random permutation of the n balls. What
is the probability that the first ball in this permutation is one of the k special balls?
What is the probability that the ith ball in this permutation is a special ball?

9.2 flipping coins.

You flip a coin n times, where the probability for a head is p. Assume that p < 1/2n.
Prove that the probability of getting 2 or more heads in these n coin flips is at most
2n2p2.

9.3 How many coins to get the first head?

You have a coin that comes up heads with probability p. What is the expected number
of times you have to flip the coin till you get a heads?

9.4 Find kth smallest number.

This question asks you to design and analyze a randomized incremental algorithm to
select the kth smallest element from a given set of n elements (from a universe with a
linear order).

In an incremental algorithm, the input consists of a sequence of elements x1, x2, . . . , xn.
After any prefix x1, . . . , xi−1 has been considered, the algorithm has computed the kth
smallest element in x1, . . . , xi−1 (which is undefined if i ≤ k), or if appropriate, some
other invariant from which the kth smallest element could be determined. This invariant
is updated as the next element xi is considered.

Any incremental algorithm can be randomized by first randomly permuting the input
sequence, with each permutation equally likely.

(a) Describe an incremental algorithm for computing the kth smallest element.

(b) How many comparisons does your algorithm perform in the worst case?

(c) What is the expected number (over all permutations) of comparisons performed
by the randomized version of your algorithm? (Hint: When considering xi, what is
the probability that xi is smaller than the kth smallest so far?) You should aim for
a bound of at most n + O(k log(n/k)). Revise (a) if necessary in order to achieve
this.

[Notice, that if k is much smaller than n, then you algorithm performs n + o(n) com-
parisons.]

1



9.5 Sorting Random Numbers

Suppose we pick a real number xi at random (uniformly) from the unit interval, for
i = 1, . . . , n.

(a) Describe an algorithm with an expected linear running time that sorts x1, . . . , xn.

To make this question more interesting, assume that we are going to use some standard
sorting algorithm instead (say merge sort), which compares the numbers directly. The
binary representation of each xi can be generated as a potentially infinite series of bits
that are the outcome of unbiased coin flips. The idea is to generate only as many bits in
this sequence as is necessary for resolving comparisons between different numbers as we
sort them. Suppose we have only generated some prefixes of the binary representations
of the numbers. Now, when comparing two numbers xi and xj, if their current partial
binary representation can resolve the comparison, then we are done. Otherwise, the
have the same partial binary representations (upto the length of the shorter of the two)
and we keep generating more bits for each until they first differ.

(b) Compute a tight upper bound on the expected number of coin flips or random bits
needed for a single comparison.

(c) Generating bits one at a time like this is probably a bad idea in practice. Give
a more practical scheme that generates the numbers in advance, using a small
number of random bits, given an upper bound n on the input size. Describe a
scheme that works correctly with probability ≥ 1 − n−c, where c is a prespecified
constant.

9.6 What happens on Uranus stays on Uranus.

There are currently k Uranusians alive on Uranus (they look a lot like cucumbers, but
with legs). Each month exactly one of the Uranusians undergoes a critical event. Either
it dies with probability p or it splits into two new Uranusians with probability p. With
probability 1− 2p nothing happens.

(A) Let Xi be the size of the population of the Uranus population after the ith month.
What is E[Xi]?Here, you need to only provide a good upper bound on V[Xi], as
computing it exactly seems hard.

(B) Let Pi be the probability that the population of Uranus is non-zero after i months.
Prove that lim∞

i=0 Pi = 0. (There is a short and elegant argument showing that, but
it is in fact not easy to see.)

(C) (Harder.) Let X be the number of months till the population of Uranus is extinct.
Prove that E[X] is unbounded.

This is a very simple example of a Galton-Watson process. From wikipedia:

The Galton-Watson process is a branching stochastic process arising from
Francis Galton’s statistical investigation of the extinction of family names.

2



There was concern amongst the Victorians that aristocratic surnames were
becoming extinct. Galton originally posed the question regarding the proba-
bility of such an event

3


