CS 473: Fundamental Algorithms, Fall 2011

Discussion 4

September 13, 2011

4.1 Recurrences

Solve the following recurrences.

- (A) T(n) = 5T(n/4) + n and T(n) = 1 for $1 \le n < 4$.
- (B) $T(n) = 2T(n/2) + n \log n$
- (C) $T(n) = 2T(n/2) + 3T(n/3) + n^2$

4.2 TREE TRAVERSAL.

Let T be a rooted binary tree on n nodes. The nodes have unique labels from 1 to n.

- (A) Given the preorder and postorder node sequences for T, give a recursive algorithm to reconstruct a tree that satisfies the preorder and postorder sequences. Is this reconstruction unique?
- (B) Given the preorder and inorder node sequences for T, give a recursive algorithm to reconstruct a tree that satisfies the preorder and inorder sequences. Is this reconstruction unique?
- 4.3 DIVIDE AND CONQUER.

Let p = (x, y) and p' = (x', y') be two points in the Euclidean plane given by their coordinates. We say that p dominates p' if and only if x > x' and y > y'. Given a set of n points $P = \{p_1, \ldots, p_n\}$, a point $p_i \in P$ is undominated in P if there is no other point $p_j \in P$ such that p_j dominates p_i . Describe an algorithm that given P outputs all the undominated points in P; see figure. Your algorithm should run in time asymptotically faster than $O(n^2)$

Figure 1: The undominated points are shown as unfilled circles.

4.4 CONVEX HULL.

You are given a set P of n points in the plane, and you would like to compute their convex-hull (i.e., that is the shortest perimeter polygon that contains all the points). To see how the convex-hull looks like, think about the plane as being a wood board, and place a nail at each point. Now, you shrink a rubber band around the points. The rubber shrinks into the convex-hull. Clearly, the vertices of the convex-hull are a subset of the input points. Show an $O(n \log n)$ time algorithm for computing the convex-hull. (Hint: Split the plane by a vertical line, compute the convex-hulls on both sides, and then figure out how to stitch the two convex-hulls together. To get a handle on this stitching problem, find closest points in the x-axis between the two hulls, and climb up to the stitching bridges.)

