CS 473: Fundamental Algorithms, Fall 2011

Discussion 4

September 13, 2011

4.1 Recurrences

Solve the following recurrences.
(A) $T(n)=5 T(n / 4)+n$ and $T(n)=1$ for $1 \leq n<4$.
(B) $T(n)=2 T(n / 2)+n \log n$
(C) $T(n)=2 T(n / 2)+3 T(n / 3)+n^{2}$

4.2 Tree Traversal.

Let T be a rooted binary tree on n nodes. The nodes have unique labels from 1 to n.
(A) Given the preorder and postorder node sequences for T, give a recursive algorithm to reconstruct a tree that satisfies the preorder and postorder sequences. Is this reconstruction unique?
(B) Given the preorder and inorder node sequences for T, give a recursive algorithm to reconstruct a tree that satisfies the preorder and inorder sequences. Is this reconstruction unique?

4.3 Divide and Conquer.

Let $p=(x, y)$ and $p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ be two points in the Euclidean plane given by their coordinates. We say that p dominates p^{\prime} if and only if $x>x^{\prime}$ and $y>y^{\prime}$. Given a set of n points $P=\left\{p_{1}, \ldots, p_{n}\right\}$, a point $p_{i} \in P$ is undominated in P if there is no other point $p_{j} \in P$ such that p_{j} dominates p_{i}. Describe an algorithm that given P outputs all the undominated points in P; see figure. Your algorithm should run in time asymptotically faster than $O\left(n^{2}\right)$

Figure 1: The undominated points are shown as unfilled circles.

4.4 Convex hull.

You are given a set P of n points in the plane, and you would like to compute their convex-hull (i.e., that is the shortest perimeter polygon that contains all the points). To see how the convex-hull looks like, think about the plane as being a wood board, and place a nail at each point. Now, you shrink a rubber band around the points. The rubber shrinks into the convex-hull. Clearly, the vertices of the convex-hull are a subset of the input points. Show an $O(n \log n)$ time algorithm for computing the convex-hull. (Hint: Split the plane by a vertical line, compute the convex-hulls on both sides, and then figure out how to stitch the two convex-hulls together. To get a handle on this stitching problem, find closest points in the x-axis between the two hulls, and climb up to the stitching bridges.)

