CS 473: Algorithms

Chandra Chekuri
chekuri@cs.illinois.edu
3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2010
Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: saw an $O(n \cdot (n + m))$ time algorithm.
This lecture: $O(n + m)$ time algorithm.
Let S_1, S_2, \ldots, S_k be the SCCs of G. The graph of SCCs is G^{SCC}.

- Vertices are S_1, S_2, \ldots, S_k.
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Figure: Graph G

Figure: Graph of SCCs G^{SCC}
Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof.

Exercise.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.
Part I

Directed Acyclic Graphs
Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.
Definition

- A vertex u is a **source** if it has no in-coming edges.
- A vertex u is a **sink** if it has no out-going edges.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only if each node is in its own strong connected component.

Formal proofs: exercise.
A topological ordering/sorting of $G = (V, E)$ is an ordering $<_{\text{on}}$ on V such that if $(u, v) \in E$ then $u < v$.

Figure: Graph G

Figure: Topological Ordering of G
Lemma

A directed graph G can be topologically ordered iff it is a DAG.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 < u_2 < \ldots < u_k < u_1$! A contradiction.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

- Pick a source u, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in $O(m + n)$ time.
Topological Sort: An Example

Output:
Topological Sort: An Example

Output: 1
Topological Sort: An Example

Output: 1 2
Topological Sort: An Example

Output: 1 2 3
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: Another Example

a → b → c → d → e → f → g → h

a d b c e g f h
DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?
DFS to check for Acyclicity and Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
- Compute DFS(G)
- If there is a back edge then
 - G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:
- Proposition G is a DAG iff there is no back-edge in DFS(G).
- Proposition If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.
DFS to check for Acyclicity and Topological Ordering

Question

Given \(G \), is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(\(G \))
- If there is a back edge then \(G \) is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

- Proposition \(G \) is a DAG iff there is no back-edge in DFS(\(G \)).
- Proposition If \(G \) is a DAG and post(\(v \)) > post(\(u \)), then (\(u, v \)) is not in \(G \).
DFS to check for Acyclicity and Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
- Compute $\text{DFS}(G)$
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition
G is a DAG iff there is no back-edge in $\text{DFS}(G)$.

Proposition
If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.
Example

\begin{itemize}
\item \textbf{Graph:}
\begin{itemize}
\item Node 1
\item Node 2 connected to Node 3
\item Node 3 connected to Node 4
\end{itemize}
\end{itemize}

\begin{itemize}
\item \textbf{Tree:}
\begin{itemize}
\item Node 2 with children 3, 4
\item Node 3 with child 4
\item Node 4 with child 2
\end{itemize}
\end{itemize}
Proposition

G has a cycle iff there is a back-edge in $DFS(G)$.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS. All other nodes in C are descendents of v_i since they are reachable from v_i. Therefore, $(v_i - 1, v_i)$ (or (v_k, v_1) if $i = 1$) is a back edge.
Proposition

\(G \) has a cycle iff there is a back-edge in DFS(\(G \)).

Proof.

If: \((u, v)\) is a back edge implies there is a cycle \(C \) consisting of the path from \(v \) to \(u \) in DFS search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \to v_2 \to \ldots \to v_k \to v_1 \). Let \(v_i \) be first node in \(C \) visited in DFS. All other nodes in \(C \) are descendents of \(v_i \) since they are reachable from \(v_i \).
Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1 \)) is a back edge.
Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Proof.

Assume $\text{post}(v) > \text{post}(u)$ and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- **Case 1:** $[\text{pre}(u), \text{post}(u)]$ is contained in $[\text{pre}(v), \text{post}(v)]$. Implies that (u, v) is a back edge but a DAG has no back edges!

- **Case 2:** $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$. This cannot happen since v would be explored from u.
A partially ordered set is a set S along with a binary relation \preceq such that \preceq is (i) reflexive ($a \preceq a$ for all $a \in V$), (ii) anti-symmetric ($a \preceq b$ implies $b \not\preceq a$) and (iii) transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not\leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.
A partially ordered set is a set S along with a binary relation \preceq such that \preceq is (i) reflexive ($a \preceq a$ for all $a \in V$), (ii) anti-symmetric ($a \preceq b$ implies $b \not\preceq a$) and (iii) transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
Part II

Linear time algorithm for finding all strong connected components of a directed graph
Finding all SCCs of a Directed Graph

Problem

Given a directed graph \(G = (V, E) \), output all its strong connected components.

Straightforward algorithm:

For each vertex \(u \in V \) do

find \(SCC(G, u) \) the strong component containing \(u \) as follows:

Obtain \(rch(G, u) \) using DFS \((G, u)\)

Obtain \(rch(G^{\text{rev}}, u) \) using DFS \((G^{\text{rev}}, u)\)

Output \(SCC(G, u) = rch(G, u) \cap rch(G^{\text{rev}}, u) \)

Running time:

\(O(n(n + m)) \)

Is there an \(O(n + m) \) time algorithm?
Finding all SCCs of a Directed Graph

Problem

Given a directed graph \(G = (V, E) \), output *all* its strong connected components.

Straightforward algorithm:

For each vertex \(u \in V \) do

- find \(SCC(G, u) \) the strong component containing \(u \) as follows:
 - Obtain \(rch(G, u) \) using \(DFS(G, u) \)
 - Obtain \(rch(G^{rev}, u) \) using \(DFS(G^{rev}, u) \)
 - Output \(SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u) \)

Running time: \(O(n(n + m)) \)
Finding all SCCs of a Directed Graph

Problem

Given a directed graph \(G = (V, E) \), output all its strong connected components.

Straightforward algorithm:

For each vertex \(u \in V \) do

find \(SCC(G, u) \) the strong component containing \(u \) as follows:

- Obtain \(rch(G, u) \) using \(DFS(G, u) \)
- Obtain \(rch(G^{rev}, u) \) using \(DFS(G^{rev}, u) \)
- Output \(SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u) \)

Running time: \(O(n(n + m)) \)

Is there an \(O(n + m) \) time algorithm?
Structure of a Directed Graph

Figure: Graph G

![Graph G](image)

Figure: Graph of SCCs G^{SCC}

![Graph of SCCs G^{SCC}](image)

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm
- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification
- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time $O(n + m)!$
How do we find a vertex in the sink SCC of G^{SCC}?
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!
Post-visit times of SCCs

Definition

Given \(G \) and a SCC \(S \) of \(G \), define \(\text{post}(S) = \max_{u \in S} \text{post}(u) \) where \(\text{post} \) numbers are with respect to some \(\text{DFS}(G) \).
An Example

Figure: Graph G

![Graph G](image)

Figure: Graph with pre-post times for DFS(A); black edges in tree

![Graph with pre-post times](image)

Figure: G^{SCC} with post times

![G^{SCC} with post times](image)
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.
If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.
Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.
If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.
- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Corollary

(Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC})
Corollary

Ordering SCCs in decreasing order of $\text{post}(S)$ gives a topological ordering of G^{SCC}.

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

$\text{DFS}(G)$ gives some information on topological ordering of G^{SCC}!
An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

Figure: G^{SCC} with post times
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm
- Let \(u \) be a vertex in a sink SCC of \(G^{SCC} \)
- Do DFS\((u) \) to compute SCC\((u) \)
- Remove SCC\((u) \) and repeat

Justification
- DFS\((u) \) only visits vertices (and edges) in SCC\((u) \)
- DFS\((u) \) takes time proportional to size of SCC\((u) \)
- Therefore, total time \(O(n + m)! \)
How do we find a vertex in the sink SCC of G^{SCC}?
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC}?
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!
Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}.

Proof.

Thus, post($SCC(u)$) is highest and will be output first in topological ordering of G^{SCC}.
The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.

- $\text{post}(\text{SCC}(u)) = \text{post}(u)$
- Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.
Proposition

The vertex u with highest post visit time in $\text{DFS}(\overline{G})$ belongs to a sink SCC of G.
Finding Sinks

Proposition

The vertex u with highest post visit time in $\text{DFS}(G^{\text{rev}})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, $\text{SCC}(u)$ is sink SCC of G.

Linear Time Algorithm

Do DFS(G^{rev}) and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
 if u is not visited then
 DFS(u)
 Let S_u be the nodes reached by u
 Output S_u as a strong connected component
 Remove S_u from G

Analysis

Running time is $O(n + m)$. (Exercise)
Linear Time Algorithm: An Example

Figure: Graph G

Figure: Graph G
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^rev
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS.
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^rev with pre-post times. Red edges not traversed in DFS

Order of second DFS: $\text{DFS}(G) = \{G\}$;
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}$; $\text{DFS}(H) = \{H\}$;

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Chekuri CS473
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{ G \}; \text{DFS}(H) = \{ H \};$
$\text{DFS}(B) = \{ B, E, F \};$

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Chekuri
CS473
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: $\text{DFS}(G) = \{G\}$; $\text{DFS}(H) = \{H\}$; $\text{DFS}(B) = \{B, E, F\}$; $\text{DFS}(A) = \{A, C, D\}$.
Obtaining the meta-graph from strong connected components

Exercise: Given all the strong connected components of a directed graph $G = (V, E)$ show that the meta-graph G^{SCC} can be obtained in $O(m + n)$ time.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.

Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G^{rev}.

u_k has highest post number and DFS(u_k) will explore all of S_k which is a sink component in G.

After S_k is removed u_{k-1} has highest post number and DFS(u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- Let S_1, S_2, \ldots, S_k be strong components in G.
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- Consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.

\[\text{Chekuri CS473} \]
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS(u_k) will explore all of S_k which is a sink component in G.

Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS(u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS(u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Part III

An Application to make
make Utility [Feldman]

- Unix utility for automatically building large software applications
Unix utility for automatically building large software applications
A makefile specifies
make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
Unix utility for automatically building large software applications

A makefile specifies
- Object files to be created,
- Source/object files to be used in creation, and
Unix utility for automatically building large software applications

A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them
An Example makefile

project: main.o utils.o command.o
 cc -o project main.o utils.o command.o

main.o: main.c defs.h
 cc -c main.c
utils.o: utils.c defs.h command.h
 cc -c utils.c
command.o: command.c defs.h command.h
 cc -c command.c
makefile as a Digraph

- main.c
- utils.c
- defs.h
- command.h
- command.c
- main.o
- utils.o
- command.o
- project
Computational Problems for make

- Is the makefile reasonable?
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
Algorithms for make

- Is the *makefile* reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.

If some file is modified, find the fewest compilations needed to make application consistent.

Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order.

Verify that one can find the files to recompile and the ordering in linear time.
Algorithms for *make*

- Is the *makefile* reasonable? *Is G a DAG?*
- If it is reasonable, in what order should the object files be created? *Find a topological sort of a DAG.*
- If it is not reasonable, provide helpful debugging information. *Output a cycle.* More generally, output all *strong connected components.*
- If some file is modified, find the fewest compilations needed to make application consistent.

Verifying the cycle and the ordering in linear time.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Takeaway Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.

- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.

- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).