CS 473: Algorithms

Chandra Chekuri
chekuri@cs.illinois.edu
3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2010
Part I

Algorithm(s) for Maximum Flow
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge.
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$.
3. **Augment** flow along this path.
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with \(f(e) = 0 \) for each edge.
2. Find a \(s-t \) path \(P \) with \(f(e) < c(e) \) for every edge \(e \in P \).
3. **Augment** flow along this path.
4. Repeat augmentation for as long as possible.
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

![Diagram of a network with edges and nodes labeled s, u, v, and t with capacities and flows indicated.]
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Residual Graph

Definition
For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
Residual Graph

Definition
For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges**: For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$
Residual Graph

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges**: For each edge $e \in E$ with $f(e) < c(e)$, we $e \in E'$ with capacity $c(e) - f(e)$
- **Backward Edges**: For each edge $e = (u, v) \in E$ with $f(e) > 0$, we $(v, u) \in E'$ with capacity $f(e)$
Residual Graph Example

Figure: Flow in red edges

Figure: Residual Graph
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma
Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma
Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma

Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.

Definition of $+$ and $-$ for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.
Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G, s, t):
- If the flow from s to t is 0
 - return 0
- Find any flow f with $v(f) > 0$ in G
- Recursively compute a maximum flow f' in G_f
- Output the flow $f + f'$
Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow\((G, s, t)\):

- If the flow from \(s\) to \(t\) is 0
 - return 0
- Find any flow \(f\) with \(v(f) > 0\) in \(G\)
- Recursively compute a maximum flow \(f'\) in \(G_f\)
- Output the flow \(f + f'\)

Iterative algorithm for finding a maximum flow:

MaxFlow\((G, s, t)\):

- Start with flow \(f\) that is 0 on all edges
- While there is a flow \(f'\) in \(G_f\) with \(v(f') > 0\) do
 - \(f = f + f'\)
 - Update \(G_f\)
- endWhile
- Output \(f\)
Ford-Fulkerson Algorithm

for every edge \(e \), \(f(e) = 0 \)

\(G_f \) is residual graph of \(G \) with respect to \(f \)

while \(G_f \) has a simple s-t path

let \(P \) be simple s-t path in \(G_f \)

\(f = \text{augment}(f,P) \)

Construct new residual graph \(G_f \)
Ford-Fulkerson Algorithm

for every edge e, \(f(e) = 0 \)

\(G_f \) is residual graph of \(G \) with respect to \(f \)

while \(G_f \) has a simple s-t path
 let P be simple s-t path in \(G_f \)
 \(f = \text{augment}(f, P) \)

Construct new residual graph \(G_f \)

\text{augment}(f, P)
 let b be bottleneck capacity, i.e., min capacity of edges in P
 for each edge \((u,v)\) in P
 if \(e=(u,v) \) is a forward edge
 \(f(e) = f(e) + b \)
 else (* \((u,v) \) is a backward edge *)
 let \(e = (v,u) \) (* \((v,u) \) is in \(G \) *)
 \(f(e) = f(e) - b \)
 return f
Example
Example continued
Example continued

\[\begin{array}{c}
\text{Ford-Fulkerson Algorithm} \\
\text{Correctness and Analysis} \\
\text{Polynomial Time Algorithms} \\
\end{array} \]

\[\begin{array}{c}
\text{Example continued} \\
\end{array} \]
Example continued
Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple s-t path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.

Capacity constraint: If \((u, v) \in P\) is a forward edge then \(f'(e) = f(e) + b \) and \(b \leq c(e) - f(e) \).

If \((u, v) \in P\) is a backward edge, then letting \(e = (v, u) \), \(f'(e) = f(e) - b \) and \(b \leq f(e) \). Both cases \(0 \leq f'(e) \leq c(e) \).

Conservation constraint: Let \(v \) be an internal node. Let \(e_1, e_2 \) be edges of \(P \) incident to \(v \). Four cases based on whether \(e_1, e_2 \) are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple \(s-t \) path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.
Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$.
Properties about Augmentation: Flow

Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.
Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple s-t path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.

- **Capacity constraint:** If \((u, v) \in P\) is a forward edge then \(f'(e) = f(e) + b \) and \(b \leq c(e) - f(e) \). If \((u, v) \in P\) is a backward edge, then letting \(e = (v, u) \), \(f'(e) = f(e) - b \) and \(b \leq f(e) \). Both cases \(0 \leq f'(e) \leq c(e) \).

- **Conservation constraint:** Let \(v \) be an internal node. Let \(e_1, e_2 \) be edges of \(P \) incident to \(v \). Four cases based on whether \(e_1, e_2 \) are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Conservation Constraint

Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.
Properties about Augmentation: Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values $f(e)$ and the residual capacities in G_f are integers

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in $j + 1$st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.
Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in the residual graph. The first edge e in P must leave s. The original network G has no incoming edges to s; hence e is a forward edge. P is simple and so never returns to s. Thus, the value of the flow increases by the flow on edge e.

Chekuri CS473
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph.

- First edge e in P must leave s
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
Progress in Ford-Fulkerson

Proposition

Let \(f \) be a flow and \(f' \) be flow after one augmentation. Then \(v(f) < v(f') \).

Proof.

Let \(P \) be an augmenting path, i.e., \(P \) is a simple \(s-t \) path in residual graph

- First edge \(e \) in \(P \) must leave \(s \)
- Original network \(G \) has no incoming edges to \(s \); hence \(e \) is a forward edge
- \(P \) is simple and so never returns to \(s \)
Proposition

Let f be a flow and f' be flow after one augmentation. Then $\nu(f) < \nu(f')$.

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
- P is simple and so never returns to s
- Thus, value of flow increases by the flow on edge e
Theorem

Let C be the minimum cut value; in particular

$C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.
Termination Proof

Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C. □
Termination Proof

Theorem

Let C be the minimum cut value; in particular
\[C \leq \sum_{e \text{ out of } s} c(e). \]
Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

Number of iterations $\leq C$

Number of edges in $G_f \leq 2m$

Time to find augmenting path is $O(n + m)$.

Running time is $O(C(n + m))$ (or $O(mC)$).
Termination Proof

Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
Termination Proof

Theorem

Let C be the minimum cut value; in particular

$$C \leq \sum_{e \text{ out of } s} c(e).$$

Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in G_f
Theorem

Let C be the minimum cut value; in particular

$C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
Termination Proof

Theorem

Let C be the minimum cut value; in particular

\[C \leq \sum_{e \text{ out of } s} c(e). \]

Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
Termination Proof

Theorem

Let C be the minimum cut value; in particular

$C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
- Running time is $O(C(n + m))$ (or $O(mC)$)
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?
Question: When the algorithm terminates, is the flow computed the maximum $s-t$ flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!
Recalling Cuts

Definition

Given a flow network an \(s-t \) cut is a set of edges \(E' \subset E \) such that removing \(E' \) disconnects \(s \) from \(t \): in other words there is no directed \(s \rightarrow t \) path in \(E - E' \). Capacity of cut \(E' \) is \(\sum_{e \in E'} c(e) \).

Let \(A \subset V \) such that

- \(s \in A, \ t \notin A \)
- \(B = V - A \) and hence \(t \in B \)

Define \((A, B) = \{ (u, v) \in E \mid u \in A, v \in B \} \)

Claim

\((A, B) \) is an \(s-t \) cut.

Recall: Every minimal \(s-t \) cut \(E' \) is a cut of the form \((A, B) \).
Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in \(G_f \) then there is some cut \((A, B)\) such that \(v(f) = c(A, B) \)

Proof.

Let \(A \) be all vertices reachable from \(s \) in \(G_f \); \(B = V \setminus A \)
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in \(G_f \) then there is some cut \((A, B)\) such that \(v(f) = c(A, B) \)

Proof.

Let \(A \) be all vertices reachable from \(s \) in \(G_f \); \(B = V \setminus A \)

- \(s \in A \) and \(t \in B \). So \((A, B)\) is an s-t cut in \(G \)
- If \(e = (u, v) \in G \) with \(u \in A \) and \(v \in B \), then \(f(e) = c(e) \) (saturated edge) because otherwise \(v \) is reachable from \(s \) in \(G_f \)
Proof.

- If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then $f(e) = 0$ because otherwise u' is reachable from s in G_f.

- Thus,

$$v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)$$
$$= f^{\text{out}}(A) - 0$$
$$= c(A, B) - 0$$
$$= c(A, B)$$
Example

Flow f

Residual graph G_f: no s-t path
Example

Residual graph G_f: no s-t path

A is reachable set from s in G_f
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

[Proof content]

[Blank space for proof content]
Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow \(f \) and \(s-t \) cut \((A, B)\), \(v(f) \leq c(A, B) \)
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
- Hence, f^* is maximum
Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network \(G \), the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

Theorem

For any network \(G \) with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?

![Graph](image.png)
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
Question: Is there a polynomial time algorithm for maxflow?
Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way?
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?

Assume we know Δ, the bottleneck capacity.

Remove all edges with residual capacity $\leq \Delta$.

Check if there is a path from s to t.

Do binary search to find largest Δ.

Running time: $O(m \log C)$.

Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log C)$ time algorithm.

Book gives a simpler variant called Capacity Scaling algorithm that runs in $O(m^2 \log C)$ time.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know \(\Delta \) the bottleneck capacity
 - Remove all edges with residual capacity \(\leq \Delta \)
 - Check if there is a path from \(s \) to \(t \)
 - Do binary search to find largest \(\Delta \)
 - Running time: \(O(m \log C) \)
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity.
 - Remove all edges with residual capacity $\leq \Delta$.
 - Check if there is a path from s to t.
 - Do binary search to find largest Δ.
 - Running time: $O(m \log C)$.
- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: $O(m \log C)$

- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.

Book gives a simpler variant called Capacity Scaling algorithm that runs in $O(m^2 \log C)$ time.
Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm’s running time is $O(m \log m)$.
- Different algorithm that also leads to $O(m \log m)$ time algorithm by adapting Prim’s algorithm.
Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2 n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an $s-t$ path).
Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2 n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).

- Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) | u \in A, v \in B\}$. **Note:** The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?