CS 473: Algorithms

Chandra Chekuri
chekuri@cs.illinois.edu
3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2010
Part I

Hash Tables
Dictionary Data Structure

- A universe \mathcal{U} of keys that have a total order: numbers, strings, etc.
- Data structure to store a subset $S \subseteq \mathcal{U}$

Operations:
- Search/lookup: given $x \in \mathcal{U}$ is $x \in S$?
- Insert: given $x \notin S$ add x to S.
- Delete: given $x \in S$ delete x from S

- *Static structure:* S given in advance or changes very infrequently, main operations are lookups.
- *Dynamic structure:* S changes rapidly so inserts and deletes as important as lookups.
Dictionary Data Structures

Common solutions:

- **Static:**
 - Store \(S \) as a *sorted* array
 - Lookup: binary search in \(O(\log |S|) \) time (comparisons)

- **Dynamic:**
 - Store \(S \) in a *balanced* binary search tree
 - Lookup, Insert, Delete in \(O(\log |S|) \) time (comparisons)
Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)
Introduction

Universal Hashing

Dictionary Data Structures

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:
- Universe U may not be (naturally) totally ordered
- Keys correspond to large objects (images, graphs etc) for which comparisons are very expensive
- Want to improve “average” performance of lookups to $O(1)$ even at cost of extra space or errors with small probability: many applications for fast lookups in networking, security, etc.
Hashing and Hash Tables

Hash Table data structure:
- A (hash) table/array T of size m (the table size)
- A hash function $h : \mathcal{U} \rightarrow \{0, \ldots, m - 1\}$
- Item $x \in \mathcal{U}$ hashes to slot $h(x)$ in T
Hashing and Hash Tables

Hash Table data structure:
- A (hash) table/array T of size m (the table size)
- A hash function $h : \mathcal{U} \rightarrow \{0, \ldots, m - 1\}$
- Item $x \in \mathcal{U}$ hashes to slot $h(x)$ in T

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?
Hashing and Hash Tables

Hash Table data structure:

- A (hash) table/array T of size m (the table size)
- A hash function $h : \mathcal{U} \rightarrow \{0, \ldots, m - 1\}$
- Item $x \in \mathcal{U}$ hashes to slot $h(x)$ in T

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element $x \in S$ hashes to a distinct slot in T. Store x in slot $h(x)$
- Lookup: given $y \in \mathcal{U}$ check if $T[h(y)] = y$. $O(1)$ time!
Hashing and Hash Tables

Hash Table data structure:
- A (hash) table/array T of size m (the table size)
- A hash function $h : U \rightarrow \{0, \ldots, m - 1\}$
- Item $x \in U$ hashes to slot $h(x)$ in T

Given $S \subseteq U$. How do we store S and how do we do lookups?

Ideal situation:
- Each element $x \in S$ hashes to a distinct slot in T. Store x in slot $h(x)$
- Lookup: given $y \in U$ check if $T[h(y)] = y$. $O(1)$ time!

Collisions unavoidable. Several different techniques to handle them.
Collision: $h(x) = h(y)$ for some $x \neq y$.

Chaining to handle collisions:

- For each slot i store all items hashed to slot i in a linked list. $T[i]$ points to the linked list.
- Lookup: to find if $y \in U$ is in T, check the linked list at $T[h(y)]$. Time proportion to size of linked list.

![Diagram showing chaining]

```plaintext
a  g  x  z

y
s
f
```
Handling Collisions

Several other techniques:

- Open addressing
- ...
- Cuckoo hashing
Understanding Hashing

Does hashing give $O(1)$ time per operation for dictionaries?
Understanding Hashing

Does hashing give $O(1)$ time per operation for dictionaries?

Questions:
- Complexity of evaluating h on a given element?
- Relative sizes of the universe \mathcal{U} and the set to be stored S.
- Size of table relative to size of S.
- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?
Understanding Hashing

- Complexity of evaluating h on a given element? Should be small.

- Relative sizes of the universe \mathcal{U} and the set to be stored S: typically $|\mathcal{U}| \gg |S|$.

- Size of table relative to size of S. The load factor of T is the ratio n/m where $n = |S|$. Typically n/m is a small constant greater than 1 (close to 2).
Understanding Hashing

- Complexity of evaluating h on a given element? Should be small.
- Relative sizes of the universe \mathcal{U} and the set to be stored S: typically $|\mathcal{U}| \gg |S|$.
- Size of table relative to size of S. The load factor of T is the ratio n/m where $n = |S|$. Typically n/m is a small constant greater than 1 (close to 2).

Main and interrelated questions:
- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?
Single hash function

- Assume \(N = |\mathcal{U}| \gg m \) where \(m \) is size of table \(T \). In particular assume \(N \geq m^2 \) (very conservative).
- Fix hash function \(h : \mathcal{U} \rightarrow \{0, \ldots, m-1\} \).
- \(N \) items hashed to \(m \) slots. By pigeon hole principle there is some \(i \in \{0, \ldots, m-1\} \) such that \(m \) elements of \(\mathcal{U} \) get hashed to \(i \)!
- Implies that there is a set \(S \subseteq \mathcal{U} \) where \(|S| = m \) such that all of \(S \) hashes to same slot!
Single hash function

- Assume $N = |\mathcal{U}| \gg m$ where m is size of table T. In particular assume $N \geq m^2$ (very conservative).
- Fix hash function $h : \mathcal{U} \rightarrow \{0, \ldots, m-1\}$.
- N items hashed to m slots. By pigeon hole principle there is some $i \in \{0, \ldots, m-1\}$ such that m elements of \mathcal{U} get hashed to i!
- Implies that there is a set $S \subseteq \mathcal{U}$ where $|S| = m$ such that all of S hashes to same slot!

Lesson: For every hash function there is a very bad set!
Picking a hash function

- Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves well.
- Theory and sound practice suggests that a hash function should be chosen properly with guarantees on its behavior.
Picking a hash function

- Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves well.
- Theory and sound practice suggests that a hash function should be chosen properly with guarantees on its behavior.

Parameters: $N = |U|$, $m = |T|$, $n = |S|$

- \mathcal{H} is a family of hash functions: each function $h \in \mathcal{H}$ should be efficient to evaluate (that is, to compute $h(x)$).
- h is chosen randomly from \mathcal{H} (typically uniformly at random). Implicitly assumes that \mathcal{H} allows an efficient sampling.
- Randomized guarantee: should have the property that for any fixed set $S \subseteq U$ of size m the expected number of collisions for a function chosen from \mathcal{H} should be “small”. Here the expectation is over the randomness in choice of h.
Picking a hash function

Question: Why not let \mathcal{H} be the set of all functions from \mathcal{U} to $\{0, 1, \ldots, m - 1\}$?
Question: Why not let \mathcal{H} be the set of all functions from \mathcal{U} to \{0, 1, \ldots, m – 1\}?

- Too many functions! A random function has high complexity!
Question: Why not let \mathcal{H} be the set of all functions from \mathcal{U} to $\{0, 1, \ldots, m - 1\}$?

- Too many functions! A random function has high complexity!

Question: Are there good and compact families \mathcal{H}?
Picking a hash function

Question: Why not let \mathcal{H} be the set of *all* functions from \mathcal{U} to \{0, 1, \ldots, m − 1\}?
- Too many functions! A random function has high complexity!

Question: Are there good and compact families \mathcal{H}?
- Yes, but one has to define what it means for \mathcal{H} to be good and compact.
Uniform hashing

Question: What are good properties of \mathcal{H} in distributing data?
Uniform hashing

Question: What are good properties of \(H \) in distributing data?

- Consider any element \(x \in U \). Then if \(h \in H \) is picked randomly then \(x \) should go into a random slot in \(T \). In other words \(\Pr[h(x) = i] = 1/m \) for every \(0 \leq i < m \).
Uniform hashing

Question: What are good properties of \mathcal{H} in distributing data?

- Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \leq i < m$.

- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most $1/m$. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).
Question: What are good properties of \mathcal{H} in distributing data?

- Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \leq i < m$.

- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most $1/m$. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).

- Second property is stronger than the first and the crucial issue.

Definition

A family hash function \mathcal{H} is (2)-universal if for all distinct $x, y \in \mathcal{U}$, $\Pr[h(x) = h(y)] = 1/m$ where m is the table size.
Uniform hashing

Question: What are good properties of \(H \) in distributing data?

- Consider any element \(x \in U \). Then if \(h \in H \) is picked randomly then \(x \) should go into a random slot in \(T \). In other words \(\Pr[h(x) = i] = 1/m \) for every \(0 \leq i < m \).

- Consider any two distinct elements \(x, y \in U \). Then if \(h \in H \) is picked randomly then the probability of a collision between \(x \) and \(y \) should be at most \(1/m \). In other words \(\Pr[h(x) = h(y)] = 1/m \) (cannot be smaller).

- Second property is stronger than the first and the crucial issue.

Definition

A family hash function \(H \) is (2)-universal if for all distinct \(x, y \in U \), \(\Pr[h(x) = h(y)] = 1/m \) where \(m \) is the table size.

Note: The set of all hash function satisfies stronger properties!
Analyzing Uniform Hashing

- T is hash table of size m.
- $S \subseteq \mathcal{U}$ is a fixed set of size m.
- h is chosen randomly from uniform hash family \mathcal{H}.
- x is a fixed element of \mathcal{U}. Assume for simplicity that $x \notin S$.

Question: What is the expected time to look up x in T using h assuming chaining used to resolve collisions?
Analyzing Uniform Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

- The time to look up x is the size of the list at $T[h(x)]$: same as the number of elements in S that collide with x under h.
- Let $\ell(x)$ be this number. We want $E[\ell(x)]$.
- For $y \in S$ let A_y be the even that x, y collide and D_y be the corresponding indicator variable.

\[\ell(x) = \sum_{y \in S} D_y \]

\[\Rightarrow E[\ell(x)] = \sum_{y \in S} E[D_y] \quad \text{linearity of expectation} \]

\[= \sum_{y \in S} \Pr[h(x) = h(y)] = \sum_{y \in S} \frac{1}{m} \quad \text{since \mathcal{H} is a uniform} \]

\[= \frac{|S|}{m} \leq 1 \]
Analyzing Uniform Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: $O(1)$!
Analyzing Uniform Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: $O(1)!$

Comments:
- $O(1)$ expected time also holds for insertion.
- Analysis assumes static set S but holds as long as S is a set formed with at most $O(m)$ insertions and deletions.
- *Worst-case* look up time can be large! How large? $\Omega(\log n / \log \log n)$.
Previous analysis assumed fixed S of size $\sim m$.

Question: What happens as items are inserted and deleted?

- If $|S|$ grows to more than cm for some constant c then hash table performance clearly degrades.
- If $|S|$ stays around $\sim m$ but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Solution:

1. Rebuild hash table periodically!
2. Choose a new table size based on current number of elements in table.
3. Choose a new random hash function and rehash the elements.
4. Discard old table and hash function.
Rehashing, amortization and making structure dynamic

Previous analysis assumed fixed S of size $\approx m$.

Question: What happens as items are inserted and deleted?

- If $|S|$ grows to more than cm for some constant c then hash table performance clearly degrades.
- If $|S|$ stays around $\approx m$ but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Solution: Rebuild hash table periodically!

- Choose a new table size based on current number of elements in table.
- Choose a new random hash function and rehash the elements.
- Discard old table and hash function.

Question: When to rebuild? How expensive?
Rebuilding the hash table

- Start with table size m where m is some estimate of $|S|$ (can be some large constant).
- If $|S|$ grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.
- If $|S|$ stays roughly the same but more than $c|S|$ operations on table for some chosen constant c (say 10), rebuild.

Amortize cost of rebuilding to previously performed operations. Rebuilding ensures $O(1)$ expected analysis holds even when S changes. Hence $O(1)$ expected look up/insert/delete time dynamic data dictionary data structure!
Constructing Universal Hash Families

Parameters: $N = |U|$, $m = |T|$, $n = |S|$

- Choose prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as
 $$h_{a,b}(x) = ((ax + b) \mod p) \mod m.$$
- Let $\mathcal{H} = \{h_{a,b} | a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p - 1)$.

Theorem: \mathcal{H} is a (2)-universal hash family.

Comments:
- Hash family is of small size, easy to sample from.
- Easy to store a hash function (a, b have to be stored) and evaluate it.
Constructing Universal Hash Families

Parameters: \(N = |U|, m = |T|, n = |S| \)

- Choose prime number \(p \geq N \). \(\mathbb{Z}_p = \{0, 1, \ldots, p - 1\} \) is a field.
- For \(a, b \in \mathbb{Z}_p, a \neq 0 \), define the hash function \(h_{a,b} \) as
 \[h_{a,b}(x) = (((ax + b) \mod p) \mod m). \]
- Let \(\mathcal{H} = \{h_{a,b} | a, b \in \mathbb{Z}_p, a \neq 0\} \). Note that \(|\mathcal{H}| = p(p - 1) \).

Theorem

\(\mathcal{H} \) is a (2)-universal hash family.
Constructing Universal Hash Families

Parameters: \(N = |U|, \ m = |T|, \ n = |S| \)

- Choose prime number \(p \geq N \). \(\mathbb{Z}_p = \{0, 1, \ldots, p - 1\} \) is a field.
- For \(a, b \in \mathbb{Z}_p, \ a \neq 0 \), define the hash function \(h_{a,b} \) as
 \[h_{a,b}(x) = ((ax + b) \mod p) \mod m. \]
- Let \(\mathcal{H} = \{ h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0 \} \). Note that \(|\mathcal{H}| = p(p - 1) \).

Theorem

\(\mathcal{H} \) is a \((2) \)-universal hash family.

Comments:

- Hash family is of small size, easy to sample from.
- Easy to store a hash function (\(a, b \) have to be stored) and evaluate it.
Constructing Universal Hash Families

- Choose prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as
 $$h_{a,b}(x) = ((ax + b) \mod p) \mod m.$$
- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p - 1)$.

Theorem \mathcal{H} is a (2)-universal hash family.

Proof. Fix $x, y \in U$. What is the probability they will collide if h is picked randomly from \mathcal{H}?

Let a, b be bad for x, y if $h_a, b(x) = h_a, b(y)$.

Claim: Number of bad pairs is at most $p(p - 1)/m$.

Total number of hash functions is $p(p - 1)$ and hence probability of a collision is $\leq 1/m$.

Chekuri CS473
Constructing Universal Hash Families

- Choose prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \ldots, p-1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as

 $$h_{a,b}(x) = ((ax + b) \mod p) \mod m.$$

- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

\mathcal{H} is a (2)-universal hash family.

Proof.

Fix $x, y \in \mathcal{U}$. What is the probability they will collide if h is picked randomly from \mathcal{H}?
Constructing Universal Hash Families

- Choose prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} | a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p - 1)$.

Theorem

\mathcal{H} is a (2)-universal hash family.

Proof.

Fix $x, y \in \mathcal{U}$. What is the probability they will collide if h is picked randomly from \mathcal{H}?

- Let a, b be bad for x, y if $h_{a,b}(x) = h_{a,b}(y)$

Claim: Number of bad pairs is at most $p(p - 1)/m$.

Total number of hash functions is $p(p - 1)$ and hence probability of a collision is $\leq 1/m$.

Some Lemmas

Lemma

If $x \neq y$ then for any $a, b \in \mathbb{Z}_p$ such that $a \neq 0$, $ax + b \mod p \neq ay + b \mod p$.

Proof.

If $ax + b \mod p = ay + b \mod p$ then $a(x - y) \mod p = 0$ and $a \neq 0$ and $(x - y) \neq 0$. However, a and $(x - y)$ cannot divide p since p is prime and $a, (x - y) < p$.
Some Lemmas

Lemma

If \(x \neq y \) then for each \((r, s)\) such that \(r \neq s \) and \(0 \leq r, s \leq p - 1 \) there is exactly one \(a, b \) such that \(ax + b \mod p = r \) and \(ay + b \mod p = s \).

Proof.

Solve the two equations:

\[
ax + b = r \mod p \quad \text{and} \quad ay + b = s \mod p
\]

We get \(a = \frac{r-s}{x-y} \mod p \) and \(b = r - ax \mod p \).
Proof of Claim

Proof.

Let \(a, b \in \mathbb{Z}_p \) such that \(a \neq 0 \) and \(h_{a,b}(x) = h_{a,b}(y) \).

- Let \(ax + b \mod p = r \) and \(ay + b \mod = s \mod p \).
- Collision if and only if \(r = s \mod m \).
- Number of pairs \((r, s) \) such that \(r \neq s \) and \(0 \leq r, s \leq p - 1 \) and \(r = s \mod m \) is \(p(p - 1)/m \).
- From previous lemma for each bad pair \((a, b) \) there is a unique pair \((r, s) \) such that \(r = s \mod m \). Hence total number of bad pairs is \(p(p - 1)/m \).
Perfect Hashing

Question: Can we make look up time $O(1)$ in worst case?

Yes for static dictionaries but then space usage is $O(m)$ only in expectation.
Take away points

- Hashing is a powerful and important technique for dictionaries. Many practical applications.
- Randomization fundamental to understanding hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.
- Many applications in practice.