Part I

Dijkstra’s Algorithm Recap
Dijkstra’s Algorithm using Priority Queues

Shortest paths from node s to all nodes in V:

$Q = \text{makePQ}()$
insert(Q, $(s,0)$)
for each node $u \neq s$
 insert(Q, (u,∞))
$S = \emptyset$
for $i = 1$ to $|V|$ do
 $(v, \text{dist}(s,v)) = \text{extractMin}(Q)$
 $S = S \cup \{v\}$
 For each u in $\text{Adj}(v)$ do
 decreaseKey(Q, $(u, \min (\text{dist}(s,u), \text{dist}(s,v) + \ell(v,u)))$)

Algorithm adds nodes to S in order of increasing distance from s
Example
Example
Example
Example
Example
Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```
Q = makePQ()
insert(Q, (s, 0))
prev(s) = null

for each node $u \neq s$
insert(Q, (u, $\infty$))
prev(u) = null

S = $\emptyset$
for $i = 1$ to $|V|$
do
(v, dist(s, v)) = extractMin(Q)
S = S $\cup \{v\}$

For each $u$ in Adj(v) do
if (dist(s, v) + $\ell(v, u)$ < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + $\ell(v, u)$))
prev(u) = v
```
Dijkstra’s algorithm finds the shortest path distances from s to V. **Question:** How do we find the paths themselves?

Q = makePQ()
insert(Q, (s,0))
prev(s) = null
for each node $u \neq s$
 insert(Q, (u, ∞))
 prev(u) = null

S = \emptyset
for $i = 1$ to $|V|$ do
 $(v, \text{dist}(s,v)) = \text{extractMin}(Q)$
 S = S \cup {v}
 For each u in Adj(v) do
 if $(\text{dist}(s,v) + \ell(v,u) < \text{dist}(s,u))$ then
 decreaseKey(Q, (u, $\text{dist}(s,v) + \ell(v,u)$))
 prev(u) = v
Lemma

The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

- The edgeset \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)
- Use induction on \(|S|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Dijkstra’s algorithm gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?
Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra’s algorithm in G^{rev}!
Part II

Shortest Paths with Negative Length Edges
Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

![Graph Diagram]
Single-Source Shortest Path Problems

Input: A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
Negative Length Cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
Shortest Paths and Negative Cycles

Given $G = (V, E)$ with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest *distance* from s to t?
Shortest Paths and Negative Cycles

Given $G = (V, E)$ with edge lengths and s, t. Suppose
- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest *distance* from s to t?

- Define shortest distance to be undefined, that is $-\infty$, OR
- Define shortest distance to be the length of a shortest *simple* path from s to t.

Lemma: If there is an efficient algorithm to find a shortest simple $s \rightarrow t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $s \rightarrow t$ path in a graph with positive edge lengths.

Finding the $s \rightarrow t$ longest path is difficult. NP-Hard!
Shortest Paths and Negative Cycles

Given $G = (V, E)$ with edge lengths and s, t. Suppose
- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest *distance* from s to t?
- Define shortest distance to be undefined, that is $-\infty$, OR
- Define shortest distance to be the length of a shortest *simple* path from s to t.

Lemma

If there is an efficient algorithm to find a shortest simple $s \rightarrow t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $s \rightarrow t$ path in a graph with positive edge lengths.
Given $G = (V, E)$ with edge lengths and s, t. Suppose
- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
- Define shortest distance to be undefined, that is $-\infty$, OR
- Define shortest distance to be the length of a shortest simple path from s to t.

Lemma

If there is an efficient algorithm to find a shortest simple $s \rightarrow t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $s \rightarrow t$ path in a graph with positive edge lengths.

Finding the $s \rightarrow t$ longest path is difficult. NP-Hard!
Shortest Paths with Negative Edge Lengths: Problems

Algorithmic Problems

Input A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t, either find a negative length cycle C that s can reach and t can reached from, or find a shortest path from s to t.
- Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all other nodes.
- Check if G has a negative length cycle or not.
Why Negative Lengths?

Several Applications

- Shortest path problems useful in modeling many situations — in some negative lengths are natural
- Negative length cycle can be used to find arbitrage opportunities in currency trading
- Important sub-routine in algorithms for more general problem: minimum-cost flow
Application to Currency Trading

Currency Trading

Input
n currencies and for each ordered pair (a, b) the *exchange rate* for converting one unit of a into one unit of b.

- Is there an arbitrage opportunity?
- Given currencies s, t what is the best way to convert s to t (perhaps via other intermediate currencies)?
Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \times \ldots \times \text{exch}(k_h, j)$ units of j.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading graph $G = (V, E)$:

- For each currency i there is a node $v_i \in V$
- $E = V \times V$: an edge for each pair of currencies
- edge length $\ell(v_i, v_j) =$
Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading graph $G = (V, E)$:
- For each currency i there is a node $v_i \in V$
- $E = V \times V$: an edge for each pair of currencies
- edge length $\ell(v_i, v_j) = \log(\text{exch}(i, j))$ can be negative

Exercise: Verify that there is an arbitrage opportunity if and only if G has a negative length cycle. The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \times \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading graph $G = (V, E)$:
- For each currency i there is a node $v_i \in V$
- $E = V \times V$: an edge for each pair of currencies
- edge length $\ell(v_i, v_j) = \log(\text{exch}(i, j))$ can be negative

Exercise: Verify that
- There is an arbitrage opportunity if and only if G has a negative length cycle.
- The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.
Algorithmic Problems

Input A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t, either find a negative length cycle C that s can reach and t can reached from, or find a shortest path from s to t.
- Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all other nodes.
- Check if G has a negative length cycle or not.
Dijkstra’s Algorithm and Negative Lengths

Observation

With negative cost edges, Dijkstra’s algorithm fails

```
<table>
<thead>
<tr>
<th>s</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-6</td>
<td>3</td>
</tr>
</tbody>
</table>
```

False assumption: Dijkstra’s algorithm is based on the assumption that if

\[s = v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \]

is a shortest path from \(s \) to \(v_k \)

then

\[\text{dist}(s, v_i) \leq \text{dist}(s, v_{i+1}) \]

for \(0 \leq i < k \).

Holds true only for non-negative edge lengths.
Dijkstra’s Algorithm and Negative Lengths

Observation
With negative cost edges, Dijkstra’s algorithm fails

\[s \xrightarrow{1} t \xrightarrow{-6} v \xrightarrow{3} u \]

False assumption: Dijkstra’s algorithm is based on the assumption that if
\[s \xrightarrow{} v_1 \xrightarrow{} v_2 \cdots \xrightarrow{} v_k \]
is a shortest path from \(s \) to \(v_k \) then
\[\text{dist}(s, v_i) \leq \text{dist}(s, v_{i+1}) \]
for \(0 \leq i < k \). Holds true only for non-negative edge lengths.
Observation

With negative cost edges, Dijkstra’s algorithm fails

False assumption: Dijkstra’s algorithm is based on the assumption that if $s = v_0 \rightarrow v_1 \rightarrow v_2 \ldots \rightarrow v_k$ is a shortest path from s to v_k then $dist(s, v_i) \leq dist(s, v_{i+1})$ for $0 \leq i < k$. Holds true only for non-negative edge lengths.
Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \to v_1 \to v_2 \to \ldots \to v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \to v_1 \to v_2 \to \ldots \to v_i$ is a shortest path from s to v_i
Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
- **False**: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.
Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
- False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need a more basic strategy.
A Generic Shortest Path Algorithm

- Start with distance estimate for each node $d(s, u)$ set to ∞
- Maintain the invariant that there is an $s \rightarrow u$ path of length $d(s, u)$. Hence $d(s, u) \geq dist(s, u)$.
- Iteratively refine $d(s, \cdot)$ values until they reach the correct value $dist(s, \cdot)$ values at termination

Question: How do we make progress?
A Generic Shortest Path Algorithm

- Start with distance estimate for each node $d(s, u)$ set to ∞
- Maintain the invariant that there is an $s \rightarrow u$ path of length $d(s, u)$. Hence $d(s, u) \geq \text{dist}(s, u)$.
- Iteratively refine $d(s, \cdot)$ values until they reach the correct value $\text{dist}(s, \cdot)$ values at termination

Question: How do we make progress?

Definition

Given distance estimates $d(s, u)$ for each $u \in V$, an edge $e = (u, v)$ is tense if $d(s, v) > d(s, u) + \ell(u, v)$.
A Generic Shortest Path Algorithm

- Start with distance estimate for each node $d(s, u)$ set to ∞
- Maintain the invariant that there is an $s \to u$ path of length $d(s, u)$. Hence $d(s, u) \geq \text{dist}(s, u)$.
- Iteratively refine $d(s, \cdot)$ values until they reach the correct value $\text{dist}(s, \cdot)$ values at termination

Question: How do we make progress?

Definition

Given distance estimates $d(s, u)$ for each $u \in V$, an edge $e = (u, v)$ is tense if $d(s, v) > d(s, u) + \ell(u, v)$.

Relax($e=(u,v)$)

if $(d(s, v) > d(s, u) + \ell(u, v))$ then

$d(s, v) = d(s, u) + \ell(u, v)$

A Generic Shortest Path Algorithm

- Start with distance estimate for each node \(d(s, u) \) set to \(\infty \)
- Maintain the invariant that there is an \(s \rightarrow u \) path of length \(d(s, u) \). Hence \(d(s, u) \geq \text{dist}(s, u) \).
- Iteratively refine \(d(s, \cdot) \) values until they reach the correct value \(\text{dist}(s, \cdot) \) values at termination

Question: How do we make progress?

Definition

Given distance estimates \(d(s, u) \) for each \(u \in V \), an edge \(e = (u, v) \) is
\text{tense} if \(d(s, v) > d(s, u) + \ell(u, v) \).

\[
\text{Relax}(e=(u,v)) \\
\quad \text{if } (d(s,v) > d(s,u) + \ell(u,v)) \text{ then} \\
\quad d(s,v) = d(s,u) + \ell(u,v)
\]

Proposition

\(\text{Relax()} \) maintains the invariant on \(d(s, u) \) values.
A Generic Shortest Path Algorithm

d(s, s) = 0
for each node \(u \neq s \) do
 \(d(s, u) = \infty \)

While there is a tense edge do
 Pick a tense edge \(e \)
 Relax(e)

Output \(d(s, u) \) values

Lemma
If the algorithm terminates then \(d(s, u) = \text{dist}(s, u) \) for each node \(u \) and \(s \) cannot reach a negative cycle.
Proof is left as an exercise after seeing future slides.
A Generic Shortest Path Algorithm

d(s,s) = 0
for each node u \neq s do
 d(s,u) = \infty

While there is a tense edge do
 Pick a tense edge e
 Relax(e)

Output d(s,u) values

Lemma

If the algorithm terminates then d(s,u) = dist(s,u) for each node u and s cannot reach a negative cycle.

Proof is left as an exercise after seeing future slides.
Dijkstra's Algorithm with Relax()

for each node $u \neq s$
\[d(s,u) = \infty\]
\[d(s,s) = 0\]
\[S = \emptyset\]
While $(S \neq V)$ do
 Let v be node in $V - S$ with min d value
 \[S = S \cup \{v\}\]
 For each edge e in $\text{Adj}(v)$ do
 Relax(e)
d(s,s) = 0
for each node u ≠ s do
 d(s,u) = ∞

While there is a tense edge do
 Pick a tense edge e
 Relax(e)

Output d(s,u) values

Question: How do we pick edges to relax?
Generic Algorithm: Ordering Relax operations

\[d(s,s) = 0 \]
for each node \(u \neq s \) do
\[d(s,u) = \infty \]

While there is a tense edge do
Pick a tense edge \(e \)
Relax\((e)\)

Output \(d(s,u) \) values

Question: How do we pick edges to relax?

Observation: Suppose \(s \to v_1 \to \ldots \to v_k \) is a shortest path.

If Relax\((s,v_1)\), Relax\((v_1,v_2)\), \ldots, Relax\((v_{k-1},v_k)\) are done in *order* then \(d(s,v_k) = \text{dist}(s,v_k) \)!
Observation: Suppose \(s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k \) is a shortest path.

If Relax\((s, v_1)\), Relax\((v_1, v_2)\), \ldots, Relax\((v_{k-1}, v_k)\) are done in order then \(d(s, v_k) = dist(s, v_k) \) (Why?)
Observation: Suppose $s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$ is a shortest path.

If Relax(s, v_1), Relax(v_1, v_2), \ldots, Relax(v_{k-1}, v_k) are done in order then $d(s, v_k) = dist(s, v_k)$! (Why?)

We don’t know the shortest paths so how do we know the order to do the Relax operations?
Observation: Suppose $s \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$ is a shortest path.

If Relax(s, v_1), Relax(v_1, v_2), \ldots, Relax(v_{k-1}, v_k) are done in order then $d(s, v_k) = \text{dist}(s, v_k)!$ (Why?)

We don’t know the shortest paths so how do we know the order to do the Relax operations?

We don’t!

- Relax all edges (even those not tense) in some arbitrary order
- Iterate $|V| - 1$ times
- First iteration will do Relax(s, v_1) (and other edges), second round Relax(v_1, v_2) and in iteration k we do Relax(v_{k-1}, v_k).
Bellman-Ford Algorithm

for each $u \in V$
 $d(s, u) = \infty$
$d(s, s) = 0$

for $i = 1$ to $|V| - 1$ do
 for each edge $e = (u, v)$ do
 Relax(e)

for each $u \in V$
 dist(s, u) = d(s, u)
Bellman-Ford Algorithm: Scanning Edges

One possible way to scan edges in each iteration.

Q is an empty queue
for each \(u \in V \)
 \(d(s,u) = \infty \)
 enqueue(Q, u)
\(d(s,s) = 0 \)

for \(i = 1 \) to \(|V| - 1\) do
 for \(i = 1 \) to \(|V|\) do
 \(u = \text{dequeue}(Q) \)
 for each edge \(e \) in Adj(u) do
 Relax(e)
 enqueue(Q,u)

for each \(u \in V \)
 \(\text{dist}(s,u) = d(s,u) \)
Figure: One iteration of Bellman-Ford that Relaxes all edges by processing nodes in the order s, a, b, c, d, e, f. Red edges indicate the prev pointers (in reverse)
Figure: 6 iterations of Bellman-Ford starting with the first one from previous slide figure. No changes in 5th iteration and 6th iteration.
Lemma

Let G be a directed graph with arbitrary edge lengths. Let v be a node in V such that there is a shortest path in G from s to v with i hops/edges. Then, after i iterations of the for loop in the Bellman-Ford algorithm, $d(s, v) = \text{dist}(s, v)$

Proof.

By induction on i.

- Base case: $i = 0$. $d(s, s) = 0$ and $d(s, s) = \text{dist}(s, s)$.
Correctness of Bellman-Ford Algorithm

Lemma

Let G be a directed graph with arbitrary edge lengths. Let v be a node in V such that there is a shortest path in G from s to v with i hops/edges. Then, after i iterations of the for loop in the Bellman-Ford algorithm, $d(s,v) = \text{dist}(s,v)$

Proof.

By induction on i.

- Base case: $i = 0$. $d(s,s) = 0$ and $d(s,s) = \text{dist}(s,s)$.
- Induction Step: Let $s \rightarrow v_1 \ldots \rightarrow v_{i-1} \rightarrow v$ be a shortest path from s to v of i hops.
Correctness of Bellman-Ford Algorithm

Lemma

Let G be a directed graph with arbitrary edge lengths. Let v be a node in V such that there is a shortest path in G from s to v with i hops/edges. Then, after i iterations of the for loop in the Bellman-Ford algorithm, $d(s,v) = \text{dist}(s,v)$

Proof.

By induction on i.

- **Base case:** $i = 0$. $d(s,s) = 0$ and $d(s,s) = \text{dist}(s,s)$.
- **Induction Step:** Let $s \rightarrow v_1 \ldots \rightarrow v_{i-1} \rightarrow v$ be a shortest path from s to v of i hops.
 - v_{i-1} has a shortest path from s of $i - 1$ hops or less. (Why?). By induction, $d(s,v_{i-1}) = \text{dist}(s,v_{i-1})$ after $i - 1$ iterations.
Correctness of Bellman-Ford Algorithm

Lemma

Let G be a directed graph with arbitrary edge lengths. Let v be a node in V such that there is a shortest path in G from s to v with i hops/edges. Then, after i iterations of the for loop in the Bellman-Ford algorithm, $d(s, v) = \text{dist}(s, v)$

Proof.

By induction on i.

- **Base case:** $i = 0$. $d(s, s) = 0$ and $d(s, s) = \text{dist}(s, s)$.
- **Induction Step:** Let $s \rightarrow v_1 \ldots \rightarrow v_{i-1} \rightarrow v$ be a shortest path from s to v of i hops.
 - v_{i-1} has a shortest path from s of $i - 1$ hops or less. (Why?). By induction, $d(s, v_{i-1}) = \text{dist}(s, v_{i-1})$ after $i - 1$ iterations.
 - In iteration i, Relax(v_{i-1}, v_i) sets $d(s, v_i) = \text{dist}(s, v_i)$.

Note: Relax does not change $d(s, u)$ once $d(s, u) = \text{dist}(s, u)$.

Chekuri CS473ug
Correctness of Bellman-Ford Algorithm

Lemma

Let G be a directed graph with arbitrary edge lengths. Let v be a node in V such that there is a shortest path in G from s to v with i hops/edges. Then, after i iterations of the for loop in the Bellman-Ford algorithm, $d(s, v) = \text{dist}(s, v)$

Proof.

By induction on i.

- **Base case:** $i = 0$. $d(s, s) = 0$ and $d(s, s) = \text{dist}(s, s)$.
- **Induction Step:** Let $s \rightarrow v_1 \ldots \rightarrow v_{i-1} \rightarrow v$ be a shortest path from s to v of i hops.
 - v_{i-1} has a shortest path from s of $i - 1$ hops or less. (Why?). By induction, $d(s, v_{i-1}) = \text{dist}(s, v_{i-1})$ after $i - 1$ iterations.
 - In iteration i, Relax(v_{i-1}, v_i) sets $d(s, v_i) = \text{dist}(s, v_i)$.
 - Note: Relax does not change $d(s, u)$ once $d(s, u) = \text{dist}(s, u)$.
Correctness of Bellman-Ford Algorithm

Corollary
After $|V| - 1$ iterations of Bellman-Ford, $d(s, u) = \text{dist}(s, u)$ for any node u that has a shortest path from s.

Note: If there is a negative cycle C such that s can reach C and C can reach s then $\text{dist}(s, u)$ is not defined.

Question: How do we know whether there is a negative cycle C reachable from s and whether $d(s, u)$ is valid or not?
Correctness of Bellman-Ford Algorithm

Corollary

After $|V| - 1$ iterations of Bellman-Ford, $d(s, u) = \text{dist}(s, u)$ for any node u that has a shortest path from s.

Note: If there is a negative cycle C such that s can reach C and C can reach s then $\text{dist}(s, u)$ is not defined.
Correctness of Bellman-Ford Algorithm

Corollary

After \(|V| - 1\) iterations of Bellman-Ford, \(d(s, u) = \text{dist}(s, u)\) for any node \(u\) that has a shortest path from \(s\).

Note: If there is a negative cycle \(C\) such that \(s\) can reach \(C\) and \(C\) can reach \(s\) then \(\text{dist}(s, u)\) is not defined.

Question: How do we know whether there is a negative cycle \(C\) reachable from \(s\) and whether \(d(s, u)\) is valid or not?
Bellman-Ford to detect Negative Cycles

for each $u \in V$

\[d(s,u) = \infty \]
\[d(s,s) = 0 \]

for $i = 1$ to $|V| - 1$ do

for each edge $e = (u,v)$ do

Relax(e)

for each $u \in V$

\[\text{dist}(s,u) = d(s,u) \]

for each edge $e = (u,v)$ do

If $e=(u,v)$ is tense then

(* s can reach a negative length cycle C and C can reach v *)

\[\text{dist}(s,v) = -\infty \]
Lemma

G has a negative cycle reachable from s if and only if there is a tense edge e after \(|V| - 1\) iterations of Bellman-Ford.

Proof Sketch.

G has no negative length cycle reachable from s implies that all nodes \(u\) have a shortest path from s. Therefore \(d(s, u) = dist(s, u)\) after the \(|V| - 1\) iterations. Therefore, there cannot be any tense edges left.
Correctness

Lemma

G has a negative cycle reachable from s if and only if there is a tense edge e after $|V| - 1$ iterations of Bellman-Ford.

Proof Sketch.

G has no negative length cycle reachable from s implies that all nodes u have a shortest path from s. Therefore $d(s, u) = dist(s, u)$ after the $|V| - 1$ iterations. Therefore, there cannot be any tense edges left.

If there are no tense edges after $|V| - 1$ iterations, then $d(s, u) = dist(s, u)$ for all nodes. See exercise after the generic shortest path algorithm.
Finding the Paths

for each $u \in V$
 \begin{align*}
 d(s,u) &= \infty \\
 \text{prev}(u) &= \text{null}
 \end{align*}
\begin{align*}
 d(s,s) &= 0
 \end{align*}
for $i = 1$ to $|V| - 1$ do
 for each edge $e = (u, v)$ do
 Relax(e)
If there is a tense edge e then
 Output that s can reach a negative cycle C
Else
 for each $u \in V$
 \begin{align*}
 \text{dist}(s,u) &= d(s,u)
 \end{align*}
Modified Relax()
Relax(e=(u,v))
 \begin{align*}
 \text{if } (d(s,v) > d(s,u) + \ell(u,v)) \text{ then} \\
 d(s,v) &= d(s,u) + \ell(u,v) \\
 \text{prev}(v) &= u
 \end{align*}
Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?
Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may negative cycles not reachable from s.
- Run Bellman-Ford $|V|$ times, once from each node u.
Negative Cycle Detection

- Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will find a negative length cycle if there is one. Exercise: why does this work?
- Negative cycle detection can be done with one Bellman-Ford invocation.
Running time for Bellman-Ford

- $O(|V|)$ iterations and $O(|E|)$ Relax() operations in each iteration. Each Relax() operation is $O(1)$ time.
- Total running time: $O(|V||E|)$.
Part III

Shortest Paths in DAGs
Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed *acyclic* graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph \(G = (V, E) \) with arbitrary (including negative) edge lengths. For edge \(e = (u, v), \ell(e) = \ell(u, v) \) is its length.

- Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
- Given node \(s \) find shortest path from \(s \) to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges
- Can order nodes using topological sort
Algorithm for DAGs

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G.
Algorithm for DAGs

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

Observation:

- shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- can find shortest paths in topological sort order.
for $i = 1$ to n

 \[d(s, v_i) = \infty\]

 \[d(s, s) = 0\]

for $i = 1$ to n do

 for each edge e in $\text{Adj}(v_i)$ do

 Relax(e)

return d values

Correctness: induction on i and observation in previous slide.

Running time: $O(m + n)$ time algorithm! Works for negative edge lengths and hence can find longest paths in a DAG.