Part I

Breadth First Search
Overview

- BFS is obtained from BasicSearch by processing edges using a data structure called a **queue**.
- It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

DFS good for exploring graph structure

BFS good for exploring **distances**
A **queue** is a list of elements which supports the following operations.
A queue is a list of elements which supports the following operations:

- **enqueue**: Adds an element to the end of the list.
A queue is a list of elements which supports the following operations

- **enqueue**: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.
Queue Data Structure

Queues

A queue is a list of elements which supports the following operations

- enqueue: Adds an element to the end of the list
- dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.
BFS Algorithm

Given (undirected or directed) graph \(G = (V, E) \) and node \(s \in V \)

BFS(s)
- Mark all vertices as unvisited
- Initialize search tree T to be empty
- Mark vertex s as visited
- set Q to be the empty queue
- enq(s)
- while Q is nonempty
 - u = deq(Q)
 - for each vertex v in Adj(u)
 - if v is not visited
 - add edge (u,v) to T
 - Mark v as visited and enq(v)

Analysis

The algorithm runs in time \(O(n + m) \).
BFS Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

BFS(s)
Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue
enq(s)
while Q is nonempty
 $u = \text{deq}(Q)$
 for each vertex v in Adj(u)
 if v is not visited
 add edge (u, v) to T
 Mark v as visited and enq(v)

Analysis
The algorithm runs in time $O(n + m)$.
BFS: An Example in Undirected Graphs

1. [1]

Breadth First Search Tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]

Breadth First Search Tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]

Breadth First Search Tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]

Breadth First Search Tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]

Breadth First Search Tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]

Breadth First Search Tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []
BFS: An Example in Undirected Graphs

Breadth First Search Tree is the set of black edges.
BFS: An Example in Directed Graphs

Definition

A directed graph (also called a digraph) is $G = (V, E)$, where V is a set of vertices or nodes, $E \subseteq V \times V$ is set of ordered pairs of vertices called edges.
BFS: An Example in Directed Graphs

Definition

A directed graph (also called a digraph) is $G = (V, E)$, where V is a set of vertices or nodes, $E \subseteq V \times V$ is set of ordered pairs of vertices called edges.

Chekuri

CS473ug
BFS(s)

Mark all vertices as unvisited and for each v set dist(v) = \infty
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue
enq(s)
while Q is nonempty
 $u = \text{deq}(Q)$
 for each vertex v in Adj(u)
 if v is not visited
 add edge (u,v) to T
 Mark v as visited, enq(v)
 and set dist(v) = dist(u) + 1
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices in the connected component of s.
- If \(\text{dist}(u) < \text{dist}(v) \) then u is visited before v.
- For every vertex u, \(\text{dist}(u) \) is indeed the length of shortest path from s to u.
- If u, v are in connected component of s and \(e = \{u, v\} \) is an edge of G, then either e is an edge in the search tree, or \(|\text{dist}(u) - \text{dist}(v)| \leq 1 \).

Proof. Exercise.

Chekuri CS473ug
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices in the connected component of s

Proof. Exercise.

Chekuri CS473ug
Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices in the connected component of s
- If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s):

1. The search tree contains exactly the set of vertices in the connected component of s.
2. If \(\text{dist}(u) < \text{dist}(v) \) then u is visited before v.
3. For every vertex u, \(\text{dist}(u) \) is indeed the length of shortest path from s to u.
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices in the connected component of s
- If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v
- For every vertex u, $\text{dist}(u)$ is indeed the length of shortest path from s to u
- If u, v are in connected component of s and $e = \{u, v\}$ is an edge of G, then either e is an edge in the search tree, or $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

Proof. Exercise.
The following properties hold upon termination of BFS(s):

- The search tree contains exactly the set of vertices in the connected component of s.
- If \(\text{dist}(u) < \text{dist}(v) \) then u is visited before v.
- For every vertex u, \(\text{dist}(u) \) is indeed the length of shortest path from s to u.
- If u, v are in connected component of s and e = \(\{u, v\} \) is an edge of G, then either e is an edge in the search tree, or \(|\text{dist}(u) - \text{dist}(v)| \leq 1 \).

Proof.
Exercise.
Proposition

The following properties hold upon termination of BFS\(\langle s \rangle\):

1. The search tree contains exactly the set of vertices reachable from \(s\).
2. If \(\text{dist}(u) < \text{dist}(v)\), then \(u\) is visited before \(v\).
3. For every vertex \(u\), \(\text{dist}(u)\) is indeed the length of the shortest path from \(s\) to \(u\).
4. If \(u\) is reachable from \(s\) and \(e = (u, v)\) is an edge of \(G\), then either \(e\) is an edge in the search tree, or \(\text{dist}(v) - \text{dist}(u) \leq 1\). Not necessarily the case that \(\text{dist}(u) - \text{dist}(v) \leq 1\).

Proof. Exercise.
Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices reachable from s
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices reachable from s
- If \(\text{dist}(u) < \text{dist}(v) \) then \(u \) is visited before \(v \)

Proof.

Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices reachable from s
- If dist(u) < dist(v) then u is visited before v
- For every vertex u, dist(u) is indeed the length of shortest path from s to u

Proof. Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices reachable from s
- If \(\text{dist}(u) < \text{dist}(v) \) then u is visited before v
- For every vertex u, \(\text{dist}(u) \) is indeed the length of shortest path from s to u
- If u is reachable from s and \(e = (u, v) \) is an edge of G, then either e is an edge in the search tree, or \(\text{dist}(v) - \text{dist}(u) \leq 1 \). Not necessarily the case that \(\text{dist}(u) - \text{dist}(v) \leq 1 \).

Proof. Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s)

- The search tree contains exactly the set of vertices reachable from s
- If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v
- For every vertex u, $\text{dist}(u)$ is indeed the length of shortest path from s to u
- If u is reachable from s and $e = (u, v)$ is an edge of G, then either e is an edge in the search tree, or $\text{dist}(v) - \text{dist}(u) \leq 1$. Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.

Proof.

Exercise.
BFS with Layers

BFS-Layers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set \(L_0 = \{s\} \)
\(i = 0 \)
While \(L_i \) is not empty do
 initialize \(L_{i+1} \) to be an empty list
 for each \(u \) in \(L_i \) do
 for each edge \((u,v)\) in \(\text{Adj}(u) \) do
 if \(v \) is not visited
 mark \(v \) as visited
 add \((u,v)\) to tree \(T \)
 add \(v \) to \(L_{i+1} \)

 \(i = i + 1 \)
BFS-Layers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set \(L_0 = \{s\} \)
\(i = 0 \)
While \(L_i \) is not empty do
 initialize \(L_{i+1} \) to be an empty list
 for each u in \(L_i \) do
 for each edge (u,v) in Adj(u) do
 if v is not visited
 mark v as visited
 add (u,v) to tree T
 add v to \(L_{i+1} \)
 \(i = i + 1 \)

Running time: \(O(n + m) \)
Proposition

The following properties hold on termination of BFS-Layers(s).

- **BFS-Layers(s) outputs a BFS tree**
- **L_i is the set of vertices at distance exactly i from s**
- **If G is undirected, each edge $e = \{u, v\}$ is one of three types:**
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree cross-edge with both u, v in same layer
- **If G is directed, each edge $e = (u, v)$ is one of four types:**
 - a tree edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
 - a non-tree forward edge between consecutive layers
 - a non-tree backward edge
 - a cross-edge with both u, v in same layer
Example
Part II

Bipartite Graphs and an application of BFS
Definition (Bipartite Graph)

Undirected graph $G = (V, E)$ is a bipartite graph if V can be partitioned into X and Y such that all edges in E are between X and Y.
Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition

An odd length cycle is not bipartite.
Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.
Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.
Bipartite Graph Characterization

Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition
An odd length cycle is not bipartite.
Proposition

An odd length cycle is not bipartite.

Proof.

Let $C = u_1, u_2, \ldots, u_{2k+1}, u_1$ be an odd cycle. Suppose C is a bipartite graph and let X, Y be the bipartition. Without loss of generality $u_1 \in X$. Implies $u_2 \in Y$. Implies $u_3 \in X$. Inductively, $u_i \in X$ if i is odd $u_i \in Y$ if i is even. But $\{u_1, u_{2k+1}\}$ is an edge and both belong to X!
Subgraphs

Definition

Given a graph \(G = (V, E) \) a subgraph of \(G \) is another graph \(H = (V', E') \) where \(V' \subseteq V \) and \(E' \subseteq E \).
Subgraphs

Definition

Given a graph $G = (V, E)$ a **subgraph** of G is another graph $H = (V', E')$ where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If G is bipartite then any subgraph H of G is also bipartite.
Subgraphs

Definition
Given a graph $G = (V, E)$ a **subgraph** of G is another graph $H = (V', E')$ where $V' \subseteq V$ and $E' \subseteq E$.

Proposition
If G is bipartite then any subgraph H of G is also bipartite.

Proposition
A graph G is not bipartite if G has an odd cycle C as a subgraph.
Subgraphs

Definition

Given a graph $G = (V, E)$ a subgraph of G is another graph $H = (V', E')$ where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If G is bipartite then any subgraph H of G is also bipartite.

Proposition

A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.

If G is bipartite then since C is a subgraph, C is also bipartite (by above proposition). However, C is not bipartite!
A graph G is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: G has an odd cycle implies G is not bipartite.
Theorem

A graph G is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: G has an odd cycle implies G is not bipartite.

If: G has no odd length cycle. Assume without loss of generality that G is connected.

- Pick u arbitrarily and do BFS(u)
- $X = \cup_{i \text{ is even}} L_i$ and $Y = \cup_{i \text{ is odd}} L_i$
- **Claim**: X and Y is a valid bipartition if G has no odd length cycle.
Proof of Claim

Claim

In BFS(u) if \(a, b \in L_i \) and \((a, b)\) is an edge then there is an odd length cycle containing \((a, b)\).
Proof of Claim

Claim

In BFS(u) if $a, b \in L$; and (a, b) is an edge then there is an odd length cycle containing (a, b).

Proof.

Let v be least common ancestor of a, b in BFS tree T. v is in some level $j < i$ (could be u itself).
Path from $v \rightarrow a$ in T is of length $j - i$.
Path from $v \rightarrow b$ in T is of length $j - i$.
These two paths plus (a, b) forms an odd cycle of length $2(j - i) + 1$.

Corollary

There is an $O(n + m)$ time algorithm to check if G is bipartite and output an odd cycle if it is not.
Proof of Claim

Claim

In BFS(u) if \(a, b \in L; \) and \((a, b)\) is an edge then there is an odd length cycle containing \((a, b)\).

Proof.

Let \(v \) be least common ancestor of \(a, b \) in BFS tree \(T \).
\(v \) is in some level \(j < i \) (could be \(u \) itself).
Path from \(v \) \(\rightsquigarrow \) \(a \) in \(T \) is of length \(j - i \).
Path from \(v \) \(\rightsquigarrow \) \(b \) in \(T \) is of length \(j - i \).
These two paths plus plus \((a, b)\) forms an odd cycle of length \(2(j - i) + 1 \).

Corollary

There is an \(O(n + m) \) time algorithm to check if \(G \) is bipartite and output an odd cycle if it is not.
Part III

Shortest Paths and Dijkstra’s Algorithm
<table>
<thead>
<tr>
<th>Input</th>
<th>A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given nodes s, t find shortest path from s to t.</td>
<td></td>
</tr>
<tr>
<td>Given node s find shortest path from s to all other nodes.</td>
<td></td>
</tr>
<tr>
<td>Find shortest paths for all pairs of nodes.</td>
<td></td>
</tr>
</tbody>
</table>
Shortest Path Problems

Input
A (undirected or directed) graph \(G = (V, E) \) with edge lengths (or costs). For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.

- Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
- Given node \(s \) find shortest path from \(s \) to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs

Undirected graph problem can be reduced to directed graph problem - how?

Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.

Set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$.

Exercise: show reduction works.
Single-Source Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
Single-Source Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs

Undirected graph problem can be reduced to directed graph problem - how?

- Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
- set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
- Exercise: show reduction works
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m + n)$ time algorithm.
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use BFS?
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.

Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(ml + n)$ time. Not efficient if L is large.
Towards an algorithm

Why does BFS work?

Lemma
Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s,v)$ denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v then for $1 \leq i < k$: $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v.

Proof.
Suppose not. Then for some $i < k$ there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_k$ is a strictly shorter path to v_k than $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$.

Chekuri
CS473ug
Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s
Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v)$ denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
- $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$.

Proof.
Suppose not. Then for some $i < k$ there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_k$ is a strictly shorter path to v_k than $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$.

Chekuri
CS473ug
Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let \(\text{dist}(s, v) \) denote the shortest path length from s to v. If \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \) is a shortest path from s to \(v_k \) then for \(1 \leq i < k \):

- \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i \) is a shortest path from s to \(v_i \);
- \(\text{dist}(s, v_i) \leq \text{dist}(s, v_k) \).

Proof.

Suppose not. Then for some \(i < k \) there is a path \(P' \) from s to \(v_i \) of length strictly less than that of \(s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i \). Then \(P' \) concatenated with \(v_i \rightarrow v_{i+1} \ldots \rightarrow v_k \) is a strictly shorter path to \(v_k \) than \(s = v_0 \rightarrow v_1 \ldots \rightarrow v_k \).
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, dist(s, v) = ∞
Initialize $S = \emptyset$,
for $i = 1$ to $|V|$ do
 (* Invariant: S contains the i-1 closest nodes to s *)
 Among nodes in $V-S$, find the node v that is the i'th closest to s
 Update dist(s, v)
 $S = S \cup \{v\}$
A Basic Strategy

Explore vertices in increasing order of distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, $\text{dist}(s,v) = \infty$
Initialiaze $S = \emptyset$
for $i = 1$ to $|V|$ do
 (* Invariant: S contains the $i-1$ closest nodes to s *)
 Among nodes in $V-S$, find the node v that is the i’th closest to s
 Update $\text{dist}(s,v)$
 $S = S \cup \{v\}$

How can we implement the step in the for loop?
Finding the \(i \)'th closest node

- \(S \) contains the \(i-1 \) closest nodes to \(s \)
- Want to find the \(i \)'th closest node from \(V - S \).

What do we know about the \(i \)'th closest node?
Finding the i’th closest node

- S contains the $i - 1$ closest nodes to s
- Want to find the i’th closest node from $V - S$.

What do we know about the i’th closest node?

Claim

Let P be a shortest path from s to v where v is the i’th closest node. Then, all intermediate nodes in P belong to S.
Finding the i’th closest node

- S contains the $i - 1$ closest nodes to s
- Want to find the i’th closest node from $V \setminus S$.

What do we know about the i’th closest node?

Claim

Let P be a shortest path from s to v where v is the i’th closest node. Then, all intermediate nodes in P belong to S.

Proof.

If P had an intermediate node u not in S then u will be closer to s than v. Implies v is not the i’th closest node to s - recall that S already has the $i - 1$ closest nodes.
Finding the i'th closest node

Corollary

*The i'th closest node is adjacent to S.***
Finding the i’th closest node

- S contains the $i - 1$ closest nodes to s
- Want to find the i’th closest node from $V - S$.

For each $u \in V - S$ let $P(s, u, S)$ be a shortest path from s to u using only nodes in S as intermediate vertices.

Let $d'(s, u)$ be the length of $P(s, u, S)$

Observations: for each $u \in V - S$, $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths

$\text{dist}(s, u) \leq \min_{a \in S} (\text{dist}(s, a) + \ell(a, u))$ - Why?

Lemma: If v is the i’th closest node to s, then $d'(s, v) = \text{dist}(s, v)$.
Finding the i’th closest node

- S contains the $i - 1$ closest nodes to s
- Want to find the i’th closest node from $V - S$.

- For each $u \in V - S$ let $P(s, u, S)$ be a shortest path from s to u using only nodes in S as intermediate vertices.
- Let $d'(s, u)$ be the length of $P(s, u, S)$

Observations: for each $u \in V - S$,

- $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
- $d'(s, u) = \min_{a \in S}(\text{dist}(s, a) + \ell(a, u))$ - Why?
Finding the i’th closest node

- S contains the $i - 1$ closest nodes to s
- Want to find the i’th closest node from $V - S$.

- For each $u \in V - S$ let $P(s, u, S)$ be a shortest path from s to u using only nodes in S as intermediate vertices.
- Let $d'(s, u)$ be the length of $P(s, u, S)$

Observations: for each $u \in V - S$,
- $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
- $d'(s, u) = \min_{a \in S}(\text{dist}(s, a) + \ell(a, u))$ - Why?

Lemma

If v is the i’th closest node to s, then $d'(s, v) = \text{dist}(s, v)$.
Finding the i’th closest node

Lemma

If v is an i’th closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Proof.

Let v be the i’th closest node to s. Then there is a shortest path P from s to v that contains only nodes in S as intermediate nodes (see prev claim). Therefore $d'(s, v) = \text{dist}(s, v)$. \qed
Finding the i’th closest node

Lemma

If v is an i’th closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Corollary

The i’th closest node to s is the node $v \in V - S$ such that $d'(s, v) = \min_{u \in V - S} d'(s, u)$.

Proof.

For every node $u \in V - S$, $\text{dist}(s, u) \leq d'(s, u)$ and for the i’th closest node v, $\text{dist}(s, v) = d'(s, v)$. Moreover, $\text{dist}(s, u) \geq \text{dist}(s, v)$ for each $u \in V - S$. \square
Algorithm

Initialize for each node v, $\text{dist}(s,v) = \infty$
Initialize $S = \emptyset$, $d'(s,s) = 0$
for $i = 1$ to $|V|$ do

 (* Invariant: S contains the $i-1$ closest nodes to s *)
 (* Invariant: $d'(s,u)$ is shortest path distance from u to s
 using only S as intermediate nodes*)

 Let v be such that $d'(s,v) = \min_{u \in V-S} d'(s,u)$
 $\text{dist}(s,v) = d'(s,v)$
 $S = S \cup \{v\}$
 for each node u in $V-S$
 compute $d'(s,u) = \min_{a \in S} (\text{dist}(s,a) + \ell(a,u))$
 endfor
Initialize for each node v, $\text{dist}(s,v) = \infty$
Initialize $S = \emptyset$, $d'(s,s) = 0$
for $i = 1$ to $|V|$ do
 (* Invariant: S contains the $i-1$ closest nodes to s *)
 (* Invariant: $d'(s,u)$ is shortest path distance from u to s
 using only S as intermediate nodes*)
 Let v be such that $d'(s,v) = \min_{u \in V-S} d'(s,u)$
 $\text{dist}(s,v) = d'(s,v)$
 $S = S \cup \{v\}$
 for each node u in $V-S$
 compute $d'(s,u) = \min_{a \in S} (\text{dist}(s,a) + \ell(a,u))$
 endfor

Correctness: By induction on i using previous lemmas.
Algorithm

Initialize for each node \(v \), \(\text{dist}(s, v) = \infty \)
Initialize \(S = \emptyset \), \(d'(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do

(* Invariant: \(S \) contains the \(i-1 \) closest nodes to \(s \) *)
(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \\) using only \(S \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - S} d'(s, u) \)
\(\text{dist}(s, v) = d'(s, v) \)
\(S = S \cup \{v\} \)
for each node \(u \) in \(V - S \)

compute \(d'(s, u) = \min_{a \in S} (\text{dist}(s, a) + \ell(a, u)) \)
endfor

Correctness: By induction on \(i \) using previous lemmas.

Running time:
Algorithm

Initialize for each node \(v \), \(\text{dist}(s,v) = \infty \)
Initialize \(S = \emptyset \), \(d'(s,s) = 0 \)

for \(i = 1 \) to \(|V| \) do

(* Invariant: \(S \) contains the \(i-1 \) closest nodes to \(s \) *)

(* Invariant: \(d'(s,u) \) is shortest path distance from \(u \) to \(s \)
using only \(S \) as intermediate nodes*)

Let \(v \) be such that \(d'(s,v) = \min_{u \in V-S} d'(s,u) \)

\(\text{dist}(s,v) = d'(s,v) \)

\(S = S \cup \{v\} \)

for each node \(u \) in \(V-S \)

\(\text{compute } d'(s,u) = \min_{a \in S} (\text{dist}(s,a) + \ell(a,u)) \)

endfor

Correctness: By induction on \(i \) using previous lemmas.

Running time: \(O(n \cdot (n + m)) \) time.

- \(n \) outer iterations and in each iteration following steps
- to compute \(d'(s, u) \) for each \(u \), scan all edges out of nodes in \(S \). Total at most \(O(m + n) \) time
Example

Priority Queues
Example

Priority Queues

Graph with nodes and edges labeled with weights:
- Node s to node 2: weight 6
- Node s to node 6: weight 13
- Node 2 to node 6: weight 9
- Node 6 to node 3: weight 10
- Node 6 to node 5: weight 30
- Node 6 to node 7: weight 8
- Node 5 to node 4: weight 11
- Node 5 to node t: weight 16
- Node 4 to node t: weight 19
- Node 7 to node t: weight 25

Key nodes:
- 0
- 6
- 9
- 24
- 36
- 13
- ∞

Chekuri

CS473ug
Example
Example
Example

Priority Queues

Chekuri

CS473ug
Example
Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration.
- $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to S in iteration i.

Algorithm:

- Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$.
- Initialize $S = \emptyset$, $d'(s, s) = 0$.
- For $i = 1$ to $|V|$ do:
 - Let v be such that $d'(s, v) = \min_{u \in V - S} d'(s, u)$.
 - $\text{dist}(s, v) = d'(s, v)$.
 - $S = S \cup \{v\}$.
 - Update $d'(s, u)$ for each u in $V - S$ as follows:
 - $d'(s, u) = \min(d'(s, u), \text{dist}(s, v) + \ell(v, u))$.

Running time:

$O(m + n^2)$ time.

- $n - 1$ outer iterations and in each iteration following steps updating $d'(s, u)$ after v added takes $O(\text{deg}(v))$ time so total work is $O(m)$ since a node enters S only once.
- Finding v from $d'(s, u)$ values is $O(n)$ time.
Main work is to compute the $d'(s, u)$ values in each iteration

$d'(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to S in iteration i.

Initialize for each node v, $\text{dist}(s,v) = d'(s,v) = \infty$

Initialize $S = \emptyset$, $d'(s,s) = 0$

for $i = 1$ to $|V|$ do

(*S contains the $i-1$ closest nodes to s, $d'(s,u)$ values current *)

Let v be such that $d'(s,v) = \min_{u \in V - S} d'(s,u)$

$\text{dist}(s,v) = d'(s,v)$

$S = S \cup \{v\}$

Update $d'(s,u)$ for each u in $V - S$ as follows:

$$d'(s,u) = \min (d'(s,u), \text{dist}(s,v) + \ell(v,u))$$

Running time:
Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration
- $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to S in iteration i.

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$
Initialize $S = \emptyset$, $d'(s, s) = 0$
for $i = 1$ to $|V|$ do
 (*S contains the $i-1$ closest nodes to s, $d'(s, u)$ values current *)
 Let v be such that $d'(s, v) = \min_{u \in V - S} d'(s, u)$
 $\text{dist}(s, v) = d'(s, v)$
 $S = S \cup \{v\}$
 Update $d'(s, u)$ for each u in $V - S$ as follows:
 $d'(s, u) = \min (d'(s, u), \text{dist}(s, v) + \ell(v, u))$

Running time: $O(m + n^2)$ time.
- $n \not\propto 1$ outer iterations and in each iteration following steps
- updating $d'(s, u)$ after v added takes $O(\text{deg}(v))$ time so total work is $O(m)$ since a node enters S only once
- Finding v from $d'(s, u)$ values is $O(n)$ time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $dist(s, u)$ maintain it
- update $dist$ values after adding v by scanning edges out of v

Initialize for each node v, $dist(s, v) = \infty$
Initialiaze $S = \{s\}$, $dist(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $dist(s, v) = \min_{u \in V - S} dist(s, u)$
 $S = S \cup \{v\}$
 For each u in $\text{Adj}(v)$ do
 $dist(s, u) = \min (dist(s, u), dist(s, v) + \ell(v, u))$

Priority Queues to maintain $dist$ values for faster running time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $dist(s, u)$ maintain it
- update $dist$ values after adding v by scanning edges out of v

Initialize for each node v, $dist(s, v) = \infty$
Initialize $S = \{s\}$, $dist(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $dist(s, v) = \min_{u \in V - S} dist(s, u)$
 $S = S \cup \{v\}$
 For each u in $\text{Adj}(v)$ do
 $dist(s, u) = \min (dist(s, u), dist(s, v) + \ell(v, u))$

Priority Queues to maintain $dist$ values for faster running time

- Using heaps and standard priority queues: $O((m + n) \log n)$
- Using Fibonacci heaps: $O(m + n \log n)$.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations

- **makeQ**: create an empty queue
- **findMin**: find the minimum key in S
- **extractMin**: Remove $v \in S$ with smallest key and return it
- **add(v, $k(v)$)**: Add new element v with key $k(v)$ to S
- **delete(v)**: Remove element v from S
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makeQ**: create an empty queue
- **findMin**: find the minimum key in S
- **extractMin**: Remove $v \in S$ with smallest key and return it
- **add**(v, k(v)): Add new element v with key $k(v)$ to S
- **delete**(v): Remove element v from S
- **decreaseKey**(v, k'(v)): *decrease* key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$
- **meld**: merge two separate priority queues into one
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations

- **makeQ**: create an empty queue
- **findMin**: find the minimum key in S
- **extractMin**: Remove $v \in S$ with smallest key and return it
- **add**(v, $k(v)$): Add new element v with key $k(v)$ to S
- **delete**(v): Remove element v from S
- **decreaseKey**(v, $k'(v)$): *decrease* key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$
- **meld**: merge two separate priority queues into one

can be performed in $O(\log n)$ time each.

decreaseKey via delete and add
Dijkstra’s Algorithm using Priority Queues

Q = makePQ()
insert(Q, (s,0))
for each node u ≠ s
 insert(Q, (u,∞))
S = ∅
for i = 1 to |V| do
 (v, dist(s,v)) = extractMin(Q)
 S = S ∪ {v}
 For each u in Adj(v) do
 decreaseKey(Q, (u, min (dist(s,u), dist(s,v) + ℓ(v,u))))

Priority Queue operations:
- \(O(n) \) insert operations
- \(O(n) \) extractMin operations
- \(O(m) \) decreaseKey operations
Implementing Priority Queues via Heaps

Using Heaps
- Store elements in a heap based on the key value
- All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n + m) \log n)$ time.
Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Priority Queues via Fibonacci Heaps and Relaxed Heaps

Fibonacci Heaps

- `extractMin`, `add`, `delete`, `meld` in $O(\log n)$ time
- `decreaseKey` in $O(1)$ *amortized* time:
Priority Queues via Fibonacci Heaps and Relaxed Heaps

Fibonacci Heaps

- extractMin, add, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)
Fibonacci Heaps

- **extractMin**, add, delete, meld in $O(\log n)$ time
- **decreaseKey** in $O(1)$ *amortized* time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
Fibonacci Heaps

- `extractMin`, `add`, `delete`, `meld` in $O(\log n)$ time
- `decreaseKey` in $O(1)$ *amortized* time: ℓ `decreaseKey` operations for $\ell \geq n$ take *together* $O(\ell)$ time
- Relaxed Heaps: `decreaseKey` in $O(1)$ worst case time but at the expense of `meld` (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)