CS 473: Algorithms

Chandra Chekuri
chekuri@cs.illinois.edu
3228 Siebel Center
University of Illinois, Urbana-Champaign

Fall 2009
Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture: saw an $O(n \cdot (n + m))$ time algorithm.
This lecture: $O(n + m)$ time algorithm.
Let S_1, S_2, \ldots, S_k be the SCCs of G. The graph of SCCs is G^{SCC}.

- Vertices are S_1, S_2, \ldots, S_k.
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.
Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^SCC.

Proof.

Exercise.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.
Part I

Directed Acyclic Graphs
A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.
Sources and Sinks

Definition

- A vertex u is a source if it has no in-coming edges.
- A vertex u is a sink if it has no out-going edges.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong component.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong component.
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong component.

Formal proofs: exercise.
A topological ordering/sorting of $G = (V, E)$ is an ordering $<$ on V such that if $(u, v) \in E$ then $u < v$.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.
DAGs and Topological Sort

Lemma

A directed graph G *can be topologically ordered iff it is a DAG.*

Proof.

Only if: Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$! A contradiction. □
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

- Pick a source u, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in $O(m + n)$ time.
Topological Sort: An Example

Output:
Topological Sort: An Example

Output: 1
Topological Sort: An Example

Output: 1 2
Topological Sort: An Example

Output: 1 2 3
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: Another Example

\begin{align*}
&\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d} \\
\text{e} \\
\text{f} \\
\text{g} \\
\text{h}
\end{array}
\end{align*}

\begin{align*}
&\begin{tikzpicture}
\node[circle,draw] (a) at (0,0) {a};
\node[circle,draw] (b) at (1,0) {b};
\node[circle,draw] (c) at (2,0) {c};
\node[circle,draw] (d) at (0,-1) {d};
\node[circle,draw] (e) at (1,-1) {e};
\node[circle,draw] (f) at (0,-2) {f};
\node[circle,draw] (g) at (1,-2) {g};
\node[circle,draw] (h) at (0,-3) {h};
\end{tikzpicture}
\end{align*}
Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?
Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS-based algorithm:

1. Compute DFS(G)
2. If there is a back edge then G is not a DAG.
3. Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Chekuri
CS473ug
Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.
 DFS to check for Acyclicity and Topological Ordering

Question

Given \(G \), is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then \(G \) is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

\(G \) is a DAG iff there is no back-edge in DFS(G).

Proposition

If \(G \) is a DAG and post(v) > post(u), then \((u, v)\) is not in \(G \).
Example
Proposition

G has a cycle iff there is a back-edge in $DFS(G)$.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS. All other nodes in C are descendents of v_i since they are reachable from v_i. Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if $i = 1$) is a back edge.
Proposition

\[G \text{ has a cycle iff there is a back-edge in } DFS(G). \]

Proof.

If: \((u, v)\) is a back edge implies there is a cycle \(C\) consisting of the path from \(v\) to \(u\) in DFS search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1\). Let \(v_i\) be first node in \(C\) visited in DFS. All other nodes in \(C\) are descendents of \(v_i\) since they are reachable from \(v_i\). Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
Proposition

If G is a DAG and $post(v) > post(u)$, then (u, v) is not in G.

Proof.

Assume $post(v) > post(u)$ and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- **Case 1:** $[pre(u), post(u)]$ is contained in $[pre(v), post(v)]$. Implies that (u, v) is a back edge but a DAG has no back edges!
- **Case 2:** $[pre(u), post(u)]$ is disjoint from $[pre(v), post(v)]$. This cannot happen since v would be explored from u.
Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not\leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \preceq such that \preceq is (i) reflexive ($a \preceq a$ for all $a \in V$), (ii) anti-symmetric ($a \preceq b$ implies $b \not\preceq a$) and (iii) transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.
DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not\leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
Part II

Linear time Algorithm for finding all Strong Connected Components
Finding all SCCs of a Graph

Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.
Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.

Algorithm from previous lecture:

For each vertex $u \in V$ do

- find $SCC(G, u)$ the strong component containing u as follows:
 - Obtain $rch(G, u)$ using $DFS(G, u)$
 - Obtain $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
 - Output $SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$

Running time: $O(n(n + m))$
Finding all SCCs of a Graph

Problem

Given a directed graph \(G = (V, E) \), output all its strong connected components.

Algorithm from previous lecture:

For each vertex \(u \in V \) do

find \(SCC(G, u) \) the strong component containing \(u \) as follows:

- Obtain \(rch(G, u) \) using \(DFS(G, u) \)
- Obtain \(rch(G^{rev}, u) \) using \(DFS(G^{rev}, u) \)
- Output \(SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u) \)

Running time: \(O(n(n + m)) \)

Is there an \(O(n + m) \) time algorithm?
Structure of a Directed Graph

Figure: Graph G

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm
- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification
- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time $O(n + m)!$
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!
Post-visit times of SCCs

Definition

Given a graph G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some DFS(G).
An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

Figure: G^{SCC} with post times

(A, C) (E, F)
(H) (G)
G^{SCC} and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be the first vertex in $S \cup S'$ that is visited.

If $u \in S$ then all of S' will be explored before DFS(u) completes.

If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(S) > \text{post}(S')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G_{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC}, then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S').$

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u').$
Corollary

(Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC})
Topological ordering of G^{SCC}

Corollary

Ordering SCCs in decreasing order of $\text{post}(S)$ gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

$\text{DFS}(G)$ gives some information on topological ordering of G^{SCC}!
An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

Figure: G^{SCC} with post times
Exploit structure of meta-graph.

Algorithm
- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification
- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time $O(n + m)$!
How do we find a vertex in the sink SCC of G^{SCC}?
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!
Proposition

The vertex u with the highest post visit time belongs to a source
SCC in G^{SCC}.

Proof.

Thus, $post(SCC(u)) = post(u)$

Thus, $post(SCC(u))$ is highest and will be output first in

the topological ordering of G^{SCC}.

Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.

- $\text{post}(\text{SCC}(u)) = \text{post}(u)$
- Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.
Proposition

The vertex u with highest post visit time in $\text{DFS}(G^{\text{rev}})$ belongs to a sink SCC of G.
Finding Sinks

Proposition

The vertex \(u \) with highest post visit time in \(\text{DFS}(G^{\text{rev}}) \) belongs to a sink SCC of \(G \).

Proof.

- \(u \) belongs to source SCC of \(G^{\text{rev}} \)
- Since graph of SCCs of \(G^{\text{rev}} \) is the reverse of \(G^{\text{SCC}} \), \(\text{SCC}(u) \) is sink SCC of \(G \).
Do DFS(G^{rev}) and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
 if u is not visited then
 DFS(u)
 Output all nodes reached by u as a strong component
 Remove these nodes from G

Analysis
Running time is $O(n + m)$.
Linear Time Algorithm: An Example

Figure: Graph G

Chekuri CS473ug
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^{rev}
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}$;

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS
Linear Time Algorithm: An Example

Order of second DFS: \(\text{DFS}(G) = \{ G \}; \text{DFS}(H) = \{ H \}; \)
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}; \text{DFS}(H) = \{H\};$
$\text{DFS}(B) = \{B, E, F\};$

Figure: G^{rev} with pre-post times.
Red edges not traversed in DFS
Linear Time Algorithm: An Example

Order of second DFS: $\text{DFS}(G) = \{G\}; \text{DFS}(H) = \{H\};$
$\text{DFS}(B) = \{B, E, F\}; \text{DFS}(A) = \{A, C, D\}.$
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $DFG(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that $post(u_i) = post(S_i) = \max_{v \in S_i} post(v)$.

Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G^{rev}.

u_k has highest post number and $DFS(u_k)$ will explore all of S_k which is a sink component in G.

After S_k is removed u_{k-1} has highest post number and $DFS(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.

\[\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1) \]
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS(u_k) will explore all of S_k which is a sink component in G.

Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $DFG(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and $DFS(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and $DFS(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Part III

An Application to make
make Utility [Feldman]

- Unix utility for automatically building large software applications
make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
Unix utility for automatically building large software applications

A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them
An Example makefile

```
project: main.o utils.o command.o
    cc -o project main.o utils.o command.o

main.o: main.c defs.h
    cc -c main.c

utils.o: utils.c defs.h command.h
    cc -c utils.c

command.o: command.c defs.h command.h
    cc -c command.c
```
makefile as a Digraph

main.c

utils.c

defs.h

command.h

command.c

main.o

utils.o

command.o

project
Computational Problems for make

- Is the makefile reasonable?
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.

If some file is modified, find the fewest compilations needed to make application consistent.

Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them.
Is the `makefile` reasonable? Is G a DAG?

If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.

If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.

If some file is modified, find the fewest compilations needed to make application consistent.
Algorithms for `make`

- Is the `makefile` reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them.