Part I

Algorithm(s) for Maximum Flow
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach: Issues

1. Begin with \(f(e) = 0 \) for each edge
2. Find a \(s-t \) path \(P \) with \(f(e) < c(e) \) for every edge \(e \in P \)
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Residual Graph

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
Residual Graph

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges:** For each edge $e \in E$ with $f(e) < c(e)$, we add an edge $e \in E'$ with capacity $c(e) - f(e)$

- **Backward Edges:** For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add an edge $(v, u) \in E'$ with capacity $f(e)$
Residual Graph

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges:** For each edge $e \in E$ with $f(e) < c(e)$, we $e \in E'$ with capacity $c(e) - f(e)$
- **Backward Edges:** For each edge $e = (u, v) \in E$ with $f(e) > 0$, we $(v, u) \in E'$ with capacity $f(e)$
Residual Graph Example

Figure: Flow in red edges

Figure: Residual Graph
Ford-Fulkerson Algorithm

for every edge e, f(e) = 0

G_f is residual graph of G with respect to f

while G_f has a simple s-t path
 let P be simple s-t path in G_f
 f = augment(f,P)

Construct new residual graph G_f
Ford-Fulkerson Algorithm

for every edge e, \(f(e) = 0 \)

\(G_f \) is residual graph of \(G \) with respect to \(f \)

while \(G_f \) has a simple s-t path

let \(P \) be simple s-t path in \(G_f \)

\(f = \text{augment}(f, P) \)

Construct new residual graph \(G_f \)

\text{augment}(f, P)

let \(b \) be bottleneck capacity, i.e., min capacity of edges in \(P \)

for each edge \((u,v) \) in \(P \)

if \(e=(u,v) \) is a forward edge

\(f(e) = f(e) + b \)

else (* \((u,v) \) is a backward edge *)

let \(e = (v,u) \) (* \((v,u) \) is in \(G \) *)

\(f(e) = f(e) - b \)

return \(f \)
Example

Ford-Fulkerson Algorithm
Correctness and Analysis
Polynomial Time Algorithms

Chekuri CS473ug
Example continued

Ford-Fulkerson Algorithm
Correctness and Analysis
Polynomial Time Algorithms

Chekuri
CS473ug
Example continued

Ford-Fulkerson Algorithm
Correctness and Analysis
Polynomial Time Algorithms

Chekuri
CS473ug
Example continued
Properties about Augmentation: Flow

Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.
Verify that f' is a flow. Let b be augmentation amount.

Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$.

If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$.

Both cases $0 \leq f'(e) \leq c(e)$.

Conservation constraint: Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple s-t path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.
Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple \(s-t \) path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.

- **Capacity constraint:** If \((u, v) \in P\) is a forward edge then \(f'(e) = f(e) + b \) and \(b \leq c(e) - f(e) \).
Properties about Augmentation: Flow

Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.
Properties about Augmentation: Flow

Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

- **Conservation constraint:** Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Conservation Constraint

Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.
Properties about Augmentation: Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values \(f(e) \) and the residual capacities in \(G_f \) are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for \(j \) iterations. Then in \(j + 1 \)st iteration, minimum capacity edge \(b \) is an integer, and so flow after augmentation is an integer.
Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph.
Progress in Ford-Fulkerson

Proposition

Let \(f \) be a flow and \(f' \) be flow after one augmentation. Then \(v(f) < v(f') \)

Proof.

Let \(P \) be an augmenting path, i.e., \(P \) is a simple \(s-t \) path in residual graph

- First edge \(e \) in \(P \) must leave \(s \)
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
- P is simple and so never returns to s
Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
- P is simple and so never returns to s
- Thus, value of flow increases by the flow on edge e
Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.
Termination Proof

Theorem

Let C be the minimum cut value; in particular

$C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

\[\Box\]
Termination Proof

Theorem

Let C be the minimum cut value; in particular

$$C \leq \sum_{e \text{ out of } s} c(e).$$

Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

The running time is $O(C(n+m))$ (or $O(mC)$).
Termination Proof

Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
Termination Proof

Theorem

Let \(C \) be the minimum cut value; in particular
\[
C \leq \sum_{e \text{ out of } s} c(e). \quad \text{Ford-Fulkerson algorithm terminates after finding at most } C \text{ augmenting paths}
\]

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most \(C \).

Running time

- Number of iterations \(\leq C \)
- Number of edges in \(G_f \)
Termination Proof

Theorem

Let C be the minimum cut value; in particular
$C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
Theorem

Let C be the minimum cut value; in particular
$C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
Termination Proof

Theorem

Let C be the minimum cut value; in particular

\[C \leq \sum_{e \text{ out of } s} c(e). \]

Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
- Running time is $O(C(n + m))$ (or $O(mC)$).
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Running time = $O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Question: When the algorithm terminates, is the flow computed the maximum s-t flow?
Question: When the algorithm terminates, is the flow computed the maximum $s-t$ flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!
Recalling Cuts

Definition

Given a flow network an \(s-t \) cut is a set of edges \(E' \subset E \) such that removing \(E' \) disconnects \(s \) from \(t \): in other words there is no directed \(s \rightarrow t \) path in \(E - E' \). **Capacity** of cut \(E' \) is \(\sum_{e \in E'} c(e) \).

Let \(A \subset V \) such that
- \(s \in A, t \notin A \)
- \(B = V - A \) and hence \(t \in B \)

Define \((A, B) = \{(u, v) \in E \mid u \in A, v \in B\} \)

Claim

\((A, B) \) is an \(s-t \) cut.

Recall: Every minimal \(s-t \) cut \(E' \) is a cut of the form \((A, B) \).
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$
Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in \(G_f \) then there is some cut \((A, B)\) such that \(v(f) = c(A, B) \)

Proof.

Let \(A \) be all vertices reachable from \(s \) in \(G_f \); \(B = V \setminus A \)
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
Ford-Fulkerson Correctness

Lemma

> If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G.
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise v is reachable from s in G.
Lemma Proof Continued

Proof.

If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then $f(e) = 0$ because otherwise u' is reachable from s. Thus, $v(f) = f_{out}(A) - f_{in}(A) = f_{out}(A) - 0 = c(A, B) - 0 = c(A, B)$.
Lemma Proof Continued

Proof.

If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then $f(e) = 0$ because otherwise u' is reachable from s. Thus, $v(f) = f_{\text{out}}(A) - f_{\text{in}}(A) = f_{\text{out}}(A) - 0 = c(A, B) - 0 = c(A, B)$.
Proof.

If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then $f(e) = 0$ because otherwise u' is reachable from s. Thus, $v(f) = f_{\text{out}}(A) - f_{\text{in}}(A) = f_{\text{out}}(A) - 0 = c(A, B)$.
Lemma Proof Continued

Proof.

\[s \xrightarrow{u} v \quad u' \xrightarrow{v'} v \quad \quad u' \xrightarrow{t} \]

If \(e = (u', v') \in G \) with \(u' \in B \) and \(v' \in A \), then \(f(e) = 0 \) because otherwise \(u' \) is reachable from \(s \).

Thus, \(v(f) = f^{out}(A) - f^{in}(A) = f^{out}(A) - 0 = c(A, B) - 0 = c(A, B) \).
Proof.

If \(e = (u', v') \in G \) with \(u' \in B \) and \(v' \in A \), then \(f(e) = 0 \) because otherwise \(u' \) is reachable from \(s \).
Proof.

- If \(e = (u', v') \in G \) with \(u' \in B \) and \(v' \in A \), then \(f(e) = 0 \) because otherwise \(u' \) is reachable from \(s \).

- Thus,

\[
\nu(f) = f^{\text{out}}(A) - f^{\text{in}}(A)
= f^{\text{out}}(A) - 0
= c(A, B) - 0
= c(A, B)
\]
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.
Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

[Proof content]
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $\nu(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $\nu(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
- Hence, f^* is maximum
For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.
Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.
Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.
Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way?
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?

Assume we know Δ, the bottleneck capacity. Remove all edges with residual capacity $\leq \Delta$. Check if there is a path from s to t. Do binary search to find largest Δ. Running time: $O(m \log C)$. Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log C)$ time algorithm. Book gives a simpler variant called Capacity Scaling algorithm that runs in $O(m^2 \log C)$ time.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$

How do we find path with largest bottleneck capacity?
- Assume we know Δ the bottleneck capacity
- Remove all edges with residual capacity $\leq \Delta$
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ

Running time: $O(m \log C)$

Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log C)$ time algorithm.

Book gives a simpler variant called Capacity Scaling algorithm that runs in $O(m^2 \log C)$ time.
Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.

How do we find path with largest bottleneck capacity?
- Assume we know Δ the bottleneck capacity
- Remove all edges with residual capacity $\leq \Delta$
- Check if there is a path from s to t
- Do binary search to find largest Δ
- Running time: $O(m \log C)$
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: $O(m \log C)$
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: $O(m \log C)$
- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson

- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: $O(m \log C)$

- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.

Book gives a simpler variant called Capacity Scaling algorithm that runs in $O(m^2 \log C)$ time.
Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2 n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).
Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2 n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).

- Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.
Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. **Note:** The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?