Part I

Maximum Weighted Independent Set in Trees
Input Graph $G = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$

Goal Find maximum weight independent set in G
Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$

Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: $\{B, D\}$
Input Tree $T = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??
Towards a Recursive Solution

For an arbitrary graph G:

- Number vertices as v_1, v_2, \ldots, v_n
- Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.
Towards a Recursive Solution

For an arbitrary graph G:

- Number vertices as v_1, v_2, \ldots, v_n
- Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree?
Towards a Recursive Solution

For an arbitrary graph G:

- Number vertices as v_1, v_2, \ldots, v_n
- Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - \mathcal{N}(v_n)$ & include v_n).
- Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T?
Towards a Recursive Solution

Natural candidate for v_n is root r of T? Let O be an optimum solution to the whole problem.

Case $r \notin O$ Then O contains an optimum solution for each subtree of T hanging at a child of r.

Case $r \in O$ None of the children of r can be in O. $O - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T.

Chekuri CS473ug
Natural candidate for v_n is root r of T? Let \mathcal{O} be an optimum solution to the whole problem.

Case $r \not\in \mathcal{O}$ Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.

Case $r \in \mathcal{O}$ None of the children of r can be in \mathcal{O}. $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
Towards a Recursive Solution

Natural candidate for \(v_n \) is root \(r \) of \(T \)? Let \(O \) be an optimum solution to the whole problem.

Case \(r \notin O \) Then \(O \) contains an optimum solution for each subtree of \(T \) hanging at a child of \(r \).

Case \(r \in O \) None of the children of \(r \) can be in \(O \). \(O - \{r\} \) contains an optimum solution for each subtree of \(T \) hanging at a grandchild of \(r \).

Subproblems? Subtrees of \(T \) hanging at nodes in \(T \).
$T(u)$: subtree of T hanging at node u

$OPT(u)$: max weighted independent set value in $T(u)$

$OPT(u) =$
A Recursive Solution

\(T(u) \): subtree of \(T \) hanging at node \(u \)

\(OPT(u) \): max weighted independent set value in \(T(u) \)

\[
OPT(u) = \max \{ \sum_{v \text{ child of } u} OPT(v), w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \}
\]
Iterative Algorithm

- Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u.
- What is an ordering of nodes of a tree T to achieve above?
Iterative Algorithm

- Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

Let v_1, v_2, \ldots, v_n be a post-order traversal of T

For $i = 1$ to n do

$M[v_i] = \max(P_{v_j \text{ child of } v_i} M[v_j], w(v_i) + P_{v_j \text{ grandchild of } v_i} M[v_j])$

return $M[v_n]$ (* Note: v_n is the root of T*)

Running time:

- Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- Better bound: $O(n)$. A value $M[v_j]$ is accessed only by its parent and grandparent.
Iterative Algorithm

- Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u.
- What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

Let v_1, v_2, \ldots, v_n be a post-order traversal of T

for $i = 1$ to n do

\[M[v_i] = \max(\sum_{v_j \text{ child of } v_i} M[v_j], w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j]) \]

return $M[v_n]$ (* Note: v_n is the root of T *)
Iterative Algorithm

- Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u

- What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

Let v_1, v_2, \ldots, v_n be a post-order traversal of T

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

\[
M[v_i] = \max\left(\sum_{\text{child of } v_i} M[v_j], w(v_i) + \sum_{\text{grandchild of } v_i} M[v_j]\right)
\]

\text{return } M[v_n] (* \text{Note: } v_n \text{ is the root of } T *)

Running time:
Iterative Algorithm

- Compute \(OPT(u)\) bottom up. To evaluate \(OPT(u)\) need to have computed values of all children and grandchildren of \(u\).
- What is an ordering of nodes of a tree \(T\) to achieve above? Post-order traversal of a tree.

Let \(v_1, v_2, \ldots, v_n\) be a post-order traversal of \(T\)

\[
\text{for } i = 1 \text{ to } n \text{ do} \\
M[v_i] = \max \left(\sum_{v_j \text{ child of } v_i} M[v_j], w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \right) \\
\text{return } M[v_n] (* \text{ Note: } v_n \text{ is the root of } T *)
\]

Running time:

- Naive bound: \(O(n^2)\) since each \(M[v_i]\) evaluation may take \(O(n)\) time and there are \(n\) evaluations.
Iterative Algorithm

- Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of u.
- What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

Let v_1, v_2, \ldots, v_n be a post-order traversal of T.

For $i = 1$ to n do

- $M[v_i] = \max(\sum_{j \text{ child of } v_i} M[v_j], w(v_i) + \sum_{j \text{ grandchild of } v_i} M[v_j])$

Return $M[v_n]$ (* Note: v_n is the root of T *)

Running time:

- Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- Better bound: $O(n)$. A value $M[v_j]$ is accessed only by its parent and grand parent.
Example
Part II

DAGs and Dynamic Programming
Recursion and DAGs

Observation

Let A be a recursive algorithm for problem Π. For each instance I of Π there is an associated DAG $G(I)$.

- Create directed graph $G(I)$ as follows
- For each sub-problem in the execution of A on I create a node
- If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph
- $G(I)$ is a DAG. Why?
Recursion and DAGs

Observation

Let A be a recursive algorithm for problem Π. For each instance I of Π there is an associated DAG $G(I)$.

- Create directed graph $G(I)$ as follows
- For each sub-problem in the execution of A on I create a node
- If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph
- $G(I)$ is a DAG. Why? If $G(I)$ has a cycle then A will not terminate on I
Iterative Algorithm in Dynamic Programming and DAGs

Observation

An iterative algorithm B obtained from a recursive algorithm A for a problem Π does the following: for each instance I of Π, it computes a topological sort of $G(I)$ and evaluates sub-problems according to the topological ordering.

- Sometimes the DAG $G(I)$ can be obtained directly without thinking about the recursive algorithm A
- In some cases (not all) the computation of an optimal solution reduces to a shortest/longest path in DAG $G(I)$
- Topological sort based shortest/longest path computation is dynamic programming!
Given intervals, create a DAG as follows

- one node for each interval plus a dummy source node for interval 0 plus a dummy sink node t.
- for each interval i add edge $(p(i), i)$ of length/weight v_i.
- for each interval i add edge (i, t) of length 0
Example

$p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0$
Given interval problem instance I let $G(I)$ denote the DAG constructed as described.

Claim: Optimum solution to weighted interval scheduling instance I is given by longest path from s to t in $G(I)$.
Given interval problem instance \(I \) let \(G(I) \) denote the DAG constructed as described.

Claim: Optimum solution to weighted interval scheduling instance \(I \) is given by *longest* path from \(s \) to \(t \) in \(G(I) \).

Assuming claim is true,

- If \(I \) has \(n \) intervals, DAG \(G(I) \) has \(n + 2 \) nodes and \(O(n) \) edges. Creating \(G(I) \) takes \(O(n \log n) \) time: to find \(p(i) \) for each \(i \). How?

- Longest path can be computed in \(O(n) \) time — recall \(O(m + n) \) algorithm for shortest/longest paths in DAGs.
DAG for Longest Increasing Sequence

Given sequence a_1, a_2, \ldots, a_n create DAG as follows:

- add sentinel a_0 to sequence where a_0 is less than smallest element in sequence
- for each i there is a node v_i
- if $i < j$ and $a_i < a_j$ add an edge (v_i, v_j)
- find longest path from v_0
Given a string “exponen” that is not in the dictionary, how should a spell checker suggest a nearby string?
Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2\ldots x_n$ and $y_1y_2\ldots y_m$ what is a distance between them?
Given a string “exponen” that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2\ldots x_n$ and $y_1y_2\ldots y_m$ what is a distance between them?

Edit Distance: minimum number of “edits” to transform x into y.
Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4

```
FOOD → MOOOD → MON O D → MONED → MONEY
```
Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

```
FOOD
MONEY
```
Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

\[
\begin{array}{cccc}
F & O & O & D \\
M & O & N & E \\
\end{array}
\]

Formally, an alignment is a set \(M \) of pairs \((i, j)\) such that each index appears at most once, and there is no “crossing”: \(i < i' \) and \(i \) is matched to \(j \) implies \(i' \) is matched to \(j' > j \). In the above example, this is \(M = \{(1, 1), (2, 2), (3, 3), (4, 5)\} \).
Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

```
FOOD
MONEY
```

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no “crossing”: $i < i'$ and i is matched to j implies i' is matched to $j' > j$. In the above example, this is $M = \{(1, 1), (2, 2), (3, 3), (4, 5)\}$. Cost of an alignment is the number of mismatched columns.
Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.
Applications

- Spell-checkers and Dictionaries
Applications

- Spell-checkers and Dictionaries
- Unix diff
Applications

- Spell-checkers and Dictionaries
- Unix diff
- DNA sequence alignment

but, we need a new metric
Applications

- Spell-checkers and Dictionaries
- Unix `diff`
- DNA sequence alignment ... but, we need a new metric
Definition

For two strings X and Y, the cost of alignment M is

- **[Gap penalty]** For each gap in the alignment, we incur a cost δ
- **[Mismatch cost]** For each pair p and q that have been matched in M, we incur cost α_{pq}; typically $\alpha_{pp} = 0$
For two strings X and Y, the cost of alignment M is

- **[Gap penalty]** For each gap in the alignment, we incur a cost δ
- **[Mismatch cost]** For each pair p and q that have been matched in M, we incur cost α_{pq}; typically $\alpha_{pp} = 0$

Edit distance is a special case when $\delta = \alpha_{pq} = 1$
An Example

Example

\[
\begin{align*}
\text{Cost} &= \delta + \alpha_{ae} \\
\text{Cost} &= 3\delta
\end{align*}
\]
Sequence Alignment

Input Given two words \(X \) and \(Y \), and gap penalty \(\delta \) and mismatch costs \(\alpha_{pq} \)

Goal Find alignment of minimum cost
Problem Structure

Observation

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.
Problem Structure

Observation

Let $X = x_1x_2 \cdots x_m$ and $Y = y_1y_2 \cdots y_n$. If (m, n) are not matched then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.

- Case x_m and y_n are matched.
Let $X = x_1x_2 \cdots x_m$ and $Y = y_1y_2 \cdots y_n$. If (m, n) are not matched then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.

- **Case** x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_my_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
Problem Structure

Observation

Let $X = x_1x_2\cdots x_m$ and $Y = y_1y_2\cdots y_n$. If (m, n) are not matched then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.

- **Case** x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_my_n}$ plus cost of aligning strings $x_1\cdots x_{m-1}$ and $y_1\cdots y_{n-1}$

- **Case** x_m is unmatched.

- **Case** y_n is unmatched.
Problem Structure

Observation

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.

- **Case** x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$

- **Case** x_m is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
Observation

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.

- **Case** x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_my_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$

- **Case** x_m is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$

- **Case** y_n is unmatched.
Observation

Let $X = x_1x_2 \cdots x_m$ and $Y = y_1y_2 \cdots y_n$. If (m, n) are not matched, then either the m'th position of X remains unmatched or the n'th position of Y remains unmatched.

- **Case** x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_my_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$

- **Case** x_m is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$

- **Case** y_n is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$
Subproblems and Recurrence

Optimal Costs

Let $\text{Opt}(i, j)$ be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$\text{Opt}(i, j) = \min(\alpha_{x_i, y_j} + \text{Opt}(i-1, j-1), \delta + \text{Opt}(i-1, j), \delta + \text{Opt}(i, j-1))$$
Let $\text{Opt}(i, j)$ be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$\text{Opt}(i, j) = \min(\alpha_{x_i, y_j} + \text{Opt}(i-1, j-1), \delta + \text{Opt}(i-1, j), \delta + \text{Opt}(i, j-1))$$

Base Cases: $\text{Opt}(i, 0) = \delta \cdot i$ and $\text{Opt}(0, j) = \delta \cdot j$
Dynamic Programming Solution

for all i $M[i,0] = i \delta$
for all j $M[0,j] = j \delta$
for $i = 1$ to m
 for $j = 1$ to n
 $M[i,j] = \min (\alpha_{x_iy_j} + M[i-1,j-1], \delta + M[i-1,j], \delta + M[i,j-1])$

Analysis

Running time is $O(mn)$
Space used is $O(mn)$
Dynamic Programming Solution

for all i $M[i,0] = i\delta$
for all j $M[0,j] = j\delta$
for $i = 1$ to m
 for $j = 1$ to n
 $M[i,j] = \min (\alpha_{x_i,y_j} + M[i-1,j-1], \delta + M[i-1,j], \delta + M[i,j-1])$

Analysis

- Running time is $O(mn)$
for all i \(M[i,0] = i\delta \)
for all j \(M[0,j] = j\delta \)
for i = 1 to m
 for j = 1 to n
 \[M[i,j] = \min (\alpha x_i y_j + M[i-1,j-1], \delta + M[i-1,j], \delta + M[i,j-1]) \]

Analysis

- Running time is \(O(mn) \)
- Space used is \(O(mn) \)
Figure: Iterative algorithm in previous slide computes values in row order. Optimal value is a shortest path from \((0, 0)\) to \((m, n)\) in DAG.
Typically the DNA sequences that are aligned are about 10^5 letters long!
Typically the DNA sequences that are aligned are about 10^5 letters long!

So about 10^{10} ops and 10^{10} bytes needed.
Typically the DNA sequences that are aligned are about 10^5 letters long!

So about 10^{10} ops and 10^{10} bytes needed

The killer is the 10GB storage
Typically the DNA sequences that are aligned are about 10^5 letters long!

So about 10^{10} ops and 10^{10} bytes needed

The killer is the 10GB storage

Can we reduce space requirements?
Recall

\[M(i, j) = \min(\alpha_{x_i y_j} + M(i-1, j-1), \delta + M(i-1, j), \delta + M(i, j-1)) \]
Recall

\[M(i, j) = \min(\alpha_{x_i, y_j} + M(i-1, j-1), \delta + M(i-1, j), \delta + M(i, j-1)) \]

Entries in \(j \)th column only depend on \((j - 1)'st\) column and earlier entries in \(j \)th column
Recall

\[M(i, j) = \min(\alpha_{x_i y_j} + M(i-1, j-1), \delta + M(i-1, j), \delta + M(i, j-1)) \]

Entries in \(j \)th column only depend on \((j-1)\)'st column and earlier entries in \(j \)th column

Only store the current column and the previous column reusing space; \(N(i, 0) \) stores \(M(i, j-1) \) and \(N(i, 1) \) stores \(M(i, j) \)
Computing in column order to save space

Figure: $M(i, j)$ only depends on previous column values. Keep only two columns and compute in column order.
Space Efficient Algorithm

for all i \(N[i,0] = i\delta \)

for j = 1 to n
 \(N[0,1] = j\delta \) (* corresponds to \(M(0,j) \) *)

for i = 1 to m
 \(N[i,1] = \min (\alpha_{x_i,y_j} + N[i-1,0], \delta + N[i-1,1], \delta + N[i,0]) \)
 update \(N[i,0] = N[i,1] \)

Analysis

Running time is \(O(mn) \) and space used is \(O(2m) = O(m) \)
From the $m \times n$ matrix M we can construct the actual alignment (exercise)
From the $m \times n$ matrix M we can construct the actual alignment (exercise)

Matrix N computes cost of optimal alignment
Analyzing Space Efficiency

- From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
Analyzing Space Efficiency

- From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment