1. (35 pts) Describe a polynomial time reduction from the 3-Color problem (given a graph G, is it 3-colorable) to 3-SAT.

2. (30 pts) A kite is a graph on an even number of nodes, say $2n$, in which n of the nodes form a clique and the remaining n vertices are connected in a “tail” that consists of a path joined to one of the nodes in the clique. Given a graph G and an integer k, the KITE problem asks for a subgraph which is a kite that contains $2k$ nodes. Prove that KITE is NP-Complete.

3. (35 pts) Given an undirected graph $G = (V, E)$ and subset of nodes $S \subseteq V$ called terminals, a Steiner tree for S in G is a tree $T = (V', E')$ such that T is a subgraph of G and T' contains all the terminals. A node $v \in V' \setminus S$ is said to be a Steiner node. Consider the following decision problem: given a graph $G = (V, E)$, a set of terminals $S \subseteq V$, and an integer k, is there a Steiner tree for S in G that contains at most k Steiner nodes? Prove that this problem is NP-complete. *Hint:* Use a reduction from the Set Cover problem; create a bipartite graph between sets and elements.

4. (0 pts) The Halting problem is the following. Given a Turing Machine (or a program) M and a string w, does M halt on w? Prove that the Halting problem is NP-hard.