1. Consider the following variant of the selection algorithm that we saw in class:

```
MODIFIEDSELECT(A, j):
    divide A into groups of 9 elements each
    find the median \( b_i \) of each group by brute force
    let \( B = \{b_1, b_2, b_3, \ldots, b_{\lceil n/9 \rceil} \} \)
    \( b = \text{MODIFIEDSELECT}(B, \lceil n/18 \rceil) \)
    partition A into \( A_{\text{less}} \) and \( A_{\text{greater}} \) using \( b \) as pivot
    if \( |A_{\text{less}}| = j \)
        return \( b \)
    else if \( |A_{\text{less}}| > j \)
        return \( \text{MODIFIEDSELECT}(A_{\text{less}}, j) \)
    else
        return \( \text{MODIFIEDSELECT}(A_{\text{greater}}, j - |A_{\text{less}}|) \)
```

Analyze the running time of this modified algorithm by writing a recurrence relation for it and solving it. Briefly justify the recurrence relation that you derived.

2. (a) Euclid’s algorithm for finding the greatest common divisor of two non-negative numbers \(a, b \) is the following:

```
EUCLID(a, b):
    if \( b > a \)
        return \( \text{EUCLID}(b, a) \)
    else
        if \( b = 0 \)
            return \( a \)
        else
            return \( \text{EUCLID}(b, a \mod b) \)
```

(i) Show by induction that the algorithm correctly computes the greatest common divisor of \(a \) and \(b \).

(ii) Assuming that the mod operation and other basic arithmetic operations take constant time, show that the running time of the algorithm is polynomial in the input size. \([\text{Note that the input size is } \Theta(\log a + \log b)]\)

(b) A slow version of the Euclid algorithm is the following.

```
SLOWEUCLID(a, b):
    if \( b > a \)
        return \( \text{SLOWEUCLID}(b, a) \)
    else
        if \( b = 0 \)
            return \( a \)
        else
            return \( \text{SLOWEUCLID}(b, a - b) \)
```

\(^1\)The selection algorithm that we saw in class divides \(A \) into groups of 5 elements.
Show via a class of examples that the above algorithm can take exponential time in the input size.