1. **Recurrences:**

 (a) Solve asymptotically: \(A(n) = 2 \cdot A(n/2) + n \log n. \)

 (b) Solve asymptotically: \(B(n) = B(5n/8) + B(n/4) + n. \)

 (c) Suppose you have two strategies to solve a problem: you can either divide it into 3 subproblems each of size \(n/2 \) or divide it into 2 subproblems each of size \(n/3 \). If the work to combine subproblems is \(n \) in both cases, what is a better solution? Which is a better solution if the work to combine subproblems is \(n^2 \)?

2. Suppose you are given \(k \) sorted arrays \(A_1, A_2, \ldots, A_k \) where each array contains \(n \) elements. The goal is to merge all the arrays into a single sorted array \(A \) of \(kn \) elements. Given two sorted arrays of size \(s \) and \(t \) respectively, you know that they can be merged into a single sorted array in \(O(s + t) \) time.

 (a) Suppose you use the following algorithm for merging the \(k \) arrays. Merge \(A_1 \) and \(A_2 \). Merge the resulting array with \(A_3 \) and the result with \(A_4 \) and so on. What is the running time of this algorithm as a function of \(k \) and \(n \)?

 (b) Give a more efficient algorithm using divide and conquer.

 (c) Consider the following modification to the merge sort algorithm. Instead of splitting the input array into 2 subarrays, recursively sorting each and merging the 2 sorted subarrays, we will split the input array into \(k \) subarrays, recursively sort each (using the modified algorithm), and merge the \(k \) sorted subarrays. How does the running time of the modified algorithm compare to that of the original algorithm?