CS 466
Introduction to Bioinformatics

Instructor: Jian Peng
Teaching Assistant: Wesley Qian
Finding hidden structure in data
Expression analysis

Brain

Blood

Liver
Single-cell expression analysis
Clustering: examples

Image segmentation
Goal: Break up the image into meaningful or perceptually similar regions
Network clustering
Clustering

- **Basic idea:** group together similar instances
- **Example:** 2D point patterns
Clustering

- **Basic idea:** group together similar instances
- **Example:** 2D point patterns

- **What could “similar” mean?**
 - One option: small Euclidean distance (squared)
 \[
 \text{dist}(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||^2_2
 \]
 - Clustering results are crucially dependent on the measure of similarity (or distance) between “points” to be clustered
• Given: N unlabeled examples \(\{x_1, \ldots, x_N \} \); the number of partitions K
• Goal: Group the examples into K partitions

The only information clustering uses is the similarity between examples

Clustering groups examples based on their mutual similarities
Clustering algorithms

1. **Flat or Partitional clustering** (e.g., K-means, Gaussian mixture models, etc.)
 - Partitions are independent of each other

2. **Hierarchical clustering** (e.g., agglomerative clustering, divisive clustering)
 - Partitions can be visualized using a tree structure (a dendrogram)
 - Does not need the number of clusters as input
 - Possible to view partitions at different levels of granularities (i.e., can refine/coarsen clusters) using different K
K-means

Input: N examples $\{x_1, \ldots, x_N\}$ ($x_n \in \mathbb{R}^D$); the number of partitions K

Initialize: K cluster centers μ_1, \ldots, μ_K. Several initialization options:
- Randomly initialized anywhere in \mathbb{R}^D
- Choose any K examples as the cluster centers

Iterate:
- Assign each of example x_n to its closest cluster center

$$C_k = \{ n : \quad k = \arg \min_k \| x_n - \mu_k \|^2 \}$$

(C_k is the set of examples closest to μ_k)

- Recompute the new cluster centers μ_k (mean/centroid of the set C_k)

$$\mu_k = \frac{1}{|C_k|} \sum_{n \in C_k} x_n$$

- Repeat while not converged
K-means for segmentation
When will K-means fail?

Non-convex/non-round-shaped clusters: Standard K-means fails!

Clusters with different densities
Agglomerative clustering

- **Agglomerative clustering:**
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters

- **Algorithm:**
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left

- Produces not one clustering, but a family of clusterings represented by a [dendrogram](#)
• How should we define “closest” for clusters with multiple elements?

• Many options:
 – Closest pair (single-link clustering)
 – Farthest pair (complete-link clustering)
 – Average of all pairs

• Different choices create different clustering behaviors
Mouse tumor data from [Hastie et al.]